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I. Introduction and Prologue

A discussion of position-effect variegation should start with a definition.
It is the mosaic expression of a gene lying near a breakpoint in a chromo-
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some rearrangement. Mosaic expression is most easily demonstrable for
cell-autonomous phenotypes displayed in large numbers of similar cells in
essentially two-dimensional array—the hypoderm, the ommatidia—but
can be inferred in other instances. Most loci examined have been found
to be susceptible to variegated expression. The mosaicism is in expression,
the gene being active in some cells but inactive in others; there are a
number of lines of evidence, to be discussed, that render unlikely an
accompanying mosaicism in genetic coding due to mutation.

Variegation is evoked chiefly by rearrangements in which one or both
breakpoints lie in heterochromatin. Sometimes several neighboring loci
.whose actions can be detected in the same cells are near a variegation-
evoking breakpoint. Their combined pattern of expression indicates that
the portion of chromosome inactivated has linear contiguity with the point
of breakage though its extent varies from cell to cell. The clonal pattern of
expression in many instances indicates that the extent of the inactivated
region is determined rather early in development and maintained with con-
siderable faithfulness through many subsequent chromosome replications
and cell divisions.

The phenomenon was first described by Muller (1930) under the label
“eversporting displacements”. He ascribed it to either chromosomal or
gene instability or to an effect on gene action by an abnormal chromosomal
position, perhaps through interaction of local gene products. Dobzhansky
(1936) included the “eversporting displacements” with cases like Bar in
his review of position effects, on the grounds that whatever the ultimate
explanation of these mosaic phenotypes, they were invariably associated
with rearrangement breakpoints. A number of other proposed mechanisms
—impairment of gene function in structural heterozygotes (Noujdin, 1944;
Ephrussi and Sutton, 1944) or disruption of the nucleic acid metabolism
of the chromosome (Schultz, 1956)—were advanced. The work prior to
1950 was very clearly reviewed by Lewis (1950). Accepting Dobzhansky’s
classification of “eversporting displacements™ as position effects, Lewis
introduced the distinction between stable and variegated position effects.
Hannah (1951) and Baker (1968) have provided mote recent summaries
of information about variegated position effects.

As to the mechanism of position-effect variegation, little is yet known
with certainty. More than forty years of speculation on the subject have
led to several hypotheses which have individually generated nwmerous
experiments, many interesting observations, and, usually, rebuttal of the
tested hypotheses. I shall not present here a history of fallen hypotheses.
However, there are certain factors whose effects on variegation beg for
explanation.

Temperature at critical stages of development, amount of certain types
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II. The Chromosomal Geography of Variegation Induction

A. Cis-poMINANCE AND THE ‘““PROOF oOF Position Errect”’

Only genes in the rearranged chromosome variegate. It was fir
out by Baker ( 1968) that a cis—trans relationshi
variegating gene ( £%) and the breakpoint (bp): gt
expression of g* —patches of & amid patches of g* tissue—while only the
usual phenotype associated with the heterozygote &g is uniformly
displayed by the recombinant £ bp* g bp. The exceptions to cis-dominance
are probably only apparent. Those few cases of “dominant” variegation—
where +-4/g bp seems to variegate—seem best explained as ordinary
cis-dominant effects on adjacent loci whose function is essential to the

apparently variegating “‘trans” locus. Specific evidence for this will be
discussed in Section IL, E. :

Cis-dominance is the basis of the “proofs”
of the variegation,

st pointed
p exists between the
bplg bp* shows mosaic

of the position-effect nature

1. Crossing Over between Locus and Breakpo;'nt

In three variegation-inducing translocations,
between the affected locus and the breakpo
the variegating allele from the rearrangemen
normal-sequence chromosome. The resulti

crossovers have been obtained
int. The crossover exchanged
t for a recessive mutant from a

behaved as the typical dominant wild-type allele
tion had resulted from its situation near the breakpoint.

Panshin (1935) replaced the variegating allele occupying the cu locus in
T(3;4)DIP" with the mutant cu, the breakpoint being 0-8 map units to“jts
right. The allele recovered from the translocation was a fully dominant
cu*. When the mutant in the translocation was again replaced by cu*,
from an unrelated stock, the original level of variegation was resumed.

Dubinin and Sidorov (1935) had similar results from a similar two-step
substitution of a new A* into T(3;4)684.

Judd (1955) found recombination at a rate of (-] % between white and
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the breakpoint of T(1; 4ywm268-21 4 the right of dm (3-1 map units from w).
A typical w* was recovered in two normal-sequence recombinants, With

2. Further Rearrangements Separating Locus and Breakpoint

In several studies, a variegating locus has been separated by later rearrange-
ment from its variegation-inducing breakpoint. A new level of variegation
is established, depending on the new location. When the new location is
the same as or generally similar to the normal location for the locus,
normal wild-type action is resumed. Nearly exact reinversions, restorin
the wild-type phenotype, have been induced in In(2LR)40d ( Hinton,
1950) and In(I)rses (Griineberg, 1937; Novitski, 1961). Panshin (1938)
found that the white mottling associated with T(1; 4)yw™ was reduced or
eliminated when the w-containing tip of the X was moved to euchromatin.
More extreme variegation resulted from an udditional heterochromatic
breakpoint near the white locus in the derived rearrangement.

B. Locrt SuBjecT TO PosiTioN-EFFECT VARIEGATION
1. Euchromatic Loci

I shall call “euchromatic” those loci placed in salivary chromosome
sections 1-19, 21-39, 42-60, 61-79, 82-100. Of these loci, very few have
not been found to variegate in appropriate rearrangements upon a direct
search. The first and most commonly recurring case is white-mottling,
With 12 pigment cells per ommatidium and more than 800 ommatidia
per eye, very fine-grain mosaicism is detectable (Gersh, 1952),
Variegation detected as obvious phenotypic mosaicism has been found
for all autonomous sex-linked loci and most of the autonomous autosgmal
loci affecting ommatidial pigment or arrangement and repetitive hypoderm
(cuticular) structures that have been screened. This includes loci once
thought to be heterochromatic because of rarely recombining with the
centromere, such as in (at 77BC) and p» (85A-D). Some of the non-
autonomous loci may reveal mosaicism in future screening. With appro-
priate histochemical methods variegation for loci affecting enzyme activity

can be detected. With these methods, variegation for loci such as mal
(which lacks aldehyde oxidase) could be detected. Mosaicism for mal due
to chromosome loss has already been demonstrated (Janning, 1972). Even
the salivary glands can be mosaic for puffs—for example the 3D puff in
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T(1;4)ywm?58-18 (Schultz, 1965). Only one locus has so far not yielded
variegants upon search—e (Brosseau, 1970), although e is autonomous in
chimaeric tissues produced from imaginal disk cell mixture or somatic
crossing over.

Non-autonomous loci, or loci whose “point” mutants have quantita-
tively variable expression, can be inferred to variegate when the rearranged
chromosome shows *“weakened dominance”—some degree of mutant
expression—in heterozygotes with hypomorph or amorph alleles, One
such locus, hairy, was the first to be used in the crossover demonstration
that it was the position of the wild-type allele in the rearrangement that
caused its partial mutant expression (Section I, A.1). For three loci—Pgd,
Amy and v (tryptophan pyrolase)—flies have less of the enzyme coded
by the allele in the rearrangement (Bahn, 1971; Tobler et al,, 1971;
Gerazimova et al., 1972). '

Factors such as extra Y chromosomes that reduce or eliminate mutant
patches in most of the mosaic variegation systems usually also reduce
mutant expression in these cases of “weakened dominance”. One test
that has been applied in searching for variegation of loci with such
drastically all-or-none phenotypes as lethality is the comparison of X0
with XY and with XYY. By this method, variegation has been identified
for lethals scattered throughout the X chromosome (Lindsley et al.,
1960; Ben Zeev and Falk, 1966). Such loci have been more precisely
localized to the right of sc (Baker, 1971), to the right of su(w") (Rayle and
Green, personal communication), to dor (Lucchesi and Bischoff, personal
communication), in the zeste-white interval (Kaufman, 1970; Judd et al.,
1972), to the right of white (Lefevre and Green, 1972), and near ras and
near v (Barr, personal communication). Ben Zeev and Falk (1966) reported
failure to induce Y-suppressed lethals on the second chromoesome, but
since they apparently scored. near-lethality (few homozygous survivors)
as non-lethals, or at least did not compare percent survival of X0 with
XY, they may have missed some lethal-variegation.

Lefevre (1972) has pointed out that the high proportior} of loci essential
for life found in the three, presumably representative, small chromosome
regions that have been studied intensively probably accounts for the
scarcity of XO-viable position-effect evoking inversions, and the localiza-

tion of those that do occur to the regions of apparent repeats—1B1-4, -
3C, 15F-16A.

2. Heterochromatic Loci

I shall call “quasi-heterochromatic” those loci whose location in salivar
gland chromosomes is in the polytenized parts of regions 20, 40-41,
80-81 or 101 at the base of each chromosome arm, extending from the
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chromocenter (cf. Lefevre, Chapter 2 Vol. 12
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) parts that are not replicated at all, At
least the parts replicated in salivary gland chromosomes appear euchromatic
in mitotic chromosomes (Hinton, 1942 Rudkin, 1965).
basal sections have been called heterochromatic beca
irregular appearance, with bands diffuse and difficy
varying from cell to cell, reflecting either an irregularity i
of chromomeres in the individual chromonemata of the
some or a lack of uniqueness in the inter-
these chromomeres (Prokofyeva-Belgovska
Hannah-Alava, personal communication),

I shall reserve the term “heterochromatic” for those loci in the non-
polytenized regions proximal to the polytene quasi-heterochromatic ?
sections. They are usually indistinguishable in the chromocenter, the
ectopically-paired association of the centromeric regions of all the chromo.-

polytene chromo-
strand associations formed bys.
¥a, 1947; Viinikka et al., 1971;

constriction (Yoon, personal communication),

Some loci probably non-replicated in the salivar
have been induced to variegate. These include
the region between the most proximal band o

centromere in D, wirilis (Baker, 1953), the male fertility factors on the Y

.
y gland chromosomes

chromosome of D, melanogaster (Neuhaus, 1939; Benner, 1970) and D,
hydei (Hess, 1970), and light (7t), which is proximal to the banded parts of
section 40 (Hessler, 1958).

Variegation of an underreplicated region has been found for the nucleolus
organizer region ( Baker, 1971; Hannah-Alava, 1971). The nucleolus

ry gland chromosomes, at
eer, 1971). Its position in the salivary

organizer region is underreplicated in saliva
least in D. hydei (Hennig and M
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gland X chromosome of D. melanogaster has been debated. Although
Hannah-Alava (1971) has most recently placed it in 20 C or D, it now seems
that at least 10 non-complementing ordinary loci including su( f) can be
assigned to the bands of section 20 (Schalet and Singer, 1971; Schalet
and Lefevre, 1973). All of the bands of section 20 are included in inversions
such as sc4 having proximal breaks to the left of the nucleolus organizer
(Cooper, 1959; Schalet and Lefevre, Ch. 21). The nucleolus organizer is
thus proximal to the whole of the polytene section 20,

The ci locus is probably in replicated salivary gland chromosome quasi-
heterochromatin. It has been placed by Hochman (1971) at the boundary
between 101 and 102, in one of the bands missing in Df(4)M?%" (101F-102
Al,2). Its variegation has been extensively studied, and shares many of
the properties of the heterochromatic loci listed above.

C. LocATION OF VARIEGATION-INDUCING REGIONS
1. Inducers of Variegation of Euchromatic Loci

Almost all rearrangements inducing euchromatic loci to variegate juxtapose
these loci to centromeric heterochromatin. In most cases the effective
heterochromatin is the part proximal to the break, although some variega-
tion results from the distally relocated portion. Not all heterochromatic
regions are equally effective; crude distinctions can be made between the
metacentric autosomal arm bases and the base of the 4th chromosome;
between the regions proximal to and distal to the nucleolus organizer on
the X; and between the regions distal to the male fertility factors and the
remainder of the Y chromosome.

Both the “heterochromatic’ autosome bases (sections 40, 41, 80, 81 and
101) and the non-polytenized regions of the salivary gland chromosomes
are effective. For example, consider the centromere region of chromosome
3. Two different insertions of nearly the same segment of the X—
Dp(1;3)N?64-58 and Dp(l; 3)w™4%—have markedly different degrees of
variegation for vital loci near the boundaries of the inserted X segment
(Ratty, 1954). The bands of the first duplication are visible clearly between
80C and 80D. The second is at the base of 81, is less clearly visible in the
salivary gland chromosome, and ““covers” lethals much less well. On the
other hand, not all breaks in 80 evoke variegation. One of the reversions of
the variegation associated with 26D loci juxtaposed to 41A (in In(2LR)40d)
occurred when region 26D was subsequently translocated to 80C (Hinton,
1950).

When a sizeable length of euchromatin is inserted into an autosome arm
base, either in the replicated or non-replicated portion, the loci nearest
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the boundaries of the inserted segment may variegate while those toward
the middle are unaffected (Demerec, 1941). Even for the distally located
Dp(1;3)N264-58, the distalmost locus, dm, is more severely affected—
appearing fully mutant except under conditions that strongly suppress
variegation (Spofford, 1973)—than the loci immediately proximal to dm.
The long insertion of 3C1-6A1,2 just proximal to 102A in T'(; 4)N264-8
does not normally variegate for loci in 3F through 4C (Demerec, 1940).
The w* locus does not variegate in T(I; 2)w%226, an insertion of 2E1-4A1
into the non-polytenized part of chromosome 2 (Lefevre, 1970). Thus both
the distal and proximal portions of the interrupted heterochromatin are
variegation-inducers.

Rather “small” portions of heterochromatin, removed from their usual
centromeric position, can occasionally cause variegation. This is the only
reasonable inference from the studies in which variegating rearrangements
have been subjected to further rearrangement. Often partial reversions
are accompanied by detachment of the affected loci from their position in
the first arrangement and relocation in a euchromatic region—but with
further intense variegation in a subsequent location, also euchromatic.
Presumably the new breaks were not induced at precisely the same positions
as the old, and some of the variegation-inducing heterochromatin, whose
presence in a polytene chromosome would be detected only as a constriction
if at all, was moved along with the marker locus (Panshin, 1938; Griffen
and Stone, 1940a; Kaufmann, 1942). The variably banding clcment
associated with bw” has been similarly interpreted as a heterochromatic
insertion (Slatis, 1955b). The other, rather rare, instance of variegating
phenotypes not associated with heterochromatin detectable in the salivary
gland chromosomes may have a similar explanation.

It is possible that the short left arm of the 4 is also variegation inducing.
Both w™!! (Panshin, 1938) and w™4 (Griffen and Stone, 1940b) are meta-
centric with complete complements of 4th chromosome loci in one arm and
regions 1-3C in the other. An alternative explanation of w™4 is that the
translocation occurred in an iso-4, since the purported 4L in the illustration

accompanying the report appears to be a reverse repeat of the basal section

of 4R.

The heterochromatin of the sex chromosomes, although a major fraction
of the total heterochromatin of a mitotically dividing cell, is comparatively
less frequently involved in variegating rearrangements than is autosomal
heterochromatin. Thus, among 8 translocations giving bw variegation
induced in one study, none involved the X chromosome, though they would
have been readily detected (Slatis, 1955a). Presumably more than half of
the rearrangements juxtaposing X or Y heterochromatin to euchromatin
do not disturb the functioning of the euchromatic loci. It seems reasonable
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either to ascribe this to heterogeneity within the heterochromatin, variega-
tion-inducing regions interspersed among non-inducing regions, or to a
lesser spread of the variegation induced by X-chromosome heterochromatin.

As for the X, it is not yet clear whether breaks in section 20 are variega-
tion inducing. Many of the earlier localizations to 20 were relative to a
location for the nucleolus-organizing region now considered incorrect.
Those based on observation of salivary gland chromosome cytology are
suspect because of the extreme variability of banding in region 20. The
actual breakpoint may lie anywhere between the reported position in 20
and either bb (if noted as to the left of the latter) or the centromere.
Reversions of variegation have been obtained for rsz? at 18F and 19E
(Kaufmann, 1942) and for @™ in 20 (Panshin, 1938). Inversions with the
same breakpoint near su(w") evoke variegation when the other breakpoint
is in the non-polytenized region between su(f) and bb but not when it is
in 19E (Rayle and Green, personal communication).

Both the non-polytenized regions to the left and to the right of the
nucleolus organizer are effective. To the left, embracing the region
proposed by Lindsley (1965) as critical to inactivation of the entire X
during spermatogenesis, are the effective breaks for rstd, wné g™l BMIL
m* and sc4, to list a few of the variegating X inversions. In some of these
the variegation-inducing region remains near the centromere and the
affected euchromatic loci are brought near it (rs3, w™4), In the others, the
variegation-inducing region is removed from the centromere and brought
near the distally located affected locus. In the case of In(I)rst? it is clear
that the break occurred within the variegation-inducing region, since the
distal w locus also variegates in an X0 male (Gersh, 1963). In the case of
the inversion with the most distal heterochromatic break (Cooper, 1959),
In(1)sct, there is no evidence for variegation induced in the loci (especially
l(1)sc) brought proximally. Again, breaks to the right of the nucleolus
organizer can divide the variegation-inducing region. In sc8, the proximal
sc and [(I)sc loci and the distal ac locus all variegate (Raffel and Muller,
1940; Baker, 1971). In sc*?, the proximal sc and the distal (/)¥! both
variegate (Baker, 1971).

The nucleolus organizer, together with an undetermined extent of
heterochromatin to either side of it, can induce variegation in its new
neighbors when transposed into euchromatic surroundings, for example,
near ct, [z or in (cited in Hannah-Alava, 1971).

The short right arm of the X induces extreme variegation of the 3C3-6
region in In(ILR) l-v 139 (Gersh, 1965), and has a strong effect on ac in
In(ILR) scV1. -

The picture that emerges for the centromeric portion of the D.
melanogaster X chromosome is of a transition from the typical euchromatin
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(organized into chromomeres that cohere homologously into the bands of
polytene chromosomes) of sections 1-19 through a region of irregular
polytenization and chromomere condensation and of dubious capacity to
evoke variegation (section 20) to a region whose condensation in most
interphase cells is not fine-grained (yielding chromomeres) but instead
very coarse (yielding heterochromatin). The distal section (Cooper’s hD),
broken in sc?, is separated from the more proximal sections by a region
that is less likely to condense at certain phases of the cell cycle (hence,
yielding a visible constriction) and is perhaps less likely to induce variega-
tion. The nucleolus organizer is not itself heterochromatic by the usual
criteria of condensation and non-transcription, but is adjoined on both
sides by regions which are; in at least parts of both of these regions breaks
are variegation-inducing.

Again, only parts of the Y chromosome induce variegation. Transloca-
tions to the Y have been shown to be the cause of some instances of
variegation of w, N, v, dp and bw. However, the locations of breaks on the
Y that induce variegation in euchromatic loci have rarely been studied.
Tobler et al. (1971) reported that the variegating v* in a T(/; Y)y* Yot
was distal to the KS male fertility loci, but with an indeterminate extent of
Y" distal to the v* locus. On the other hand, some of the reversions induced
in In(2LR)40d resulted from relocating the variegating loci from region
41 to the Y chromosome (Hinton, 1950). Thus, the property of inducing
variegation is apparently not uniformly distributed along the considerable
extent of sex chromosome heterochromatin, though there is no present

. reason to doubt its uniformity in the shorter heterochromatic regions at

the bases of the autosome arms.

.

2. Inducers of Variegation of Heterochromatic Loci

Variegation of ¢i (the “Dubinin effect””) and ¢ in D. melanogaster, of pe
in D. virilis, and of the male fertility factors in both D. melanogaster and
D. hydei—identified in the latter as suppression of specific loops—is
evoked most readily by breaks separating these loci from their centromeres
and moving them somewhere into the distal three-quarters of the euchro-
matic arms. Of 193 rearrangements giving variegation of ci analysed by
Khvostova (1939, 1941), over twice as many involved chromosome 3 (114)
as chromosome 2 (47). None of the variegation-inducing breaks occurred
in the proximal euchromatic regions of the long autosomes, although some
occurred in 41, 80 and 81 when these latter were removed from the
centromere by additional rearrangements. Only 12 were on the X, but
the entire length of the salivary gland X, including section 20, was
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variegation-inducing. Breaks in or distal to the fertility-factor region of
Y® and distal to at least /-2 in Y" generate ci* variegation (Neuhaus, 1939
Parker, 1967; Benner, 1970). Benner found that even a portion of YT
distal to kI-2, but not including an entire active k-2, region could continue
to evoke cf variegation so long as the original Y-4 junction was not severed
during detachment of a compound X chromosome. Probably few of the
types of new junction formed at the base of the X could themselves evoke
¢ variegation since only one was found among many detachments of
T(Y,;4)’s with full c¢i* expression. Stern and Kodani (1955) found that
breaks in the centromeric as well as distal regions of the long autosomes
induced “dominant” variegation in mutant ¢t chromosomes, the probable
basis for which will be discussed in Section III.E. Similarly, Hessler
(1958) found lt-variegation-inducing regions to be restricted to the distal
or very centric portions of the X, 2 and 3, in a smaller series of rearrange-
ments. Ganglion mitotic figures confirmed that substantial portions of the
2L heterochromatin, including its secondary constriction, had been moved
distally.

In D. virilis, Baker (1953) induced pe* variegation by translocation to
distal euchromatic locations in other chromosomes or to the Y chromosome
either proximal or distal to, but not within, the male fertility region.
Some pe™ mutants placed the distal portion of the heterochromatin of
chromosome 4 distal to the pe locus without removing pe from the
centromere of 5.

Variegation of the male fertility factors is the most probable reason for
Neuhaus’ (1939) finding that 38 out of 46 induced T(Y;4) ci’s were
male sterile. Complementation testing indicated the inactive kI or ks
factors to be those translocated to section 101. Presumably many trans-
locations had been induced in the same large-scdle study with breaks
proximal to the fertility factors—but were undetected because basal Y
and basal 4 heterochromatin provided similar conditions permitting normal
action of the ci locus. More recently, Benner (1970) analysed a number of
Parker’s T(Y,4)’s with a break in Y" that had been isolated without
regard to ci effects. Several had relatively low activity of all the k/ factors
remaining attached to the Y centromere, giving low fertility in combination
with tester-Y chromosomes. The activity of these factors varied with
temperature in the manner typical for position-effect variegation. The
variegation, if such it was, must have been induced in this case by the
distally placed 4R, itself broken to the left of (i.e. proximal to) ¢ci*. One
¢t fragment lacked kl-2 activity entirely, but in further rearrangements ..
with the basal X regained kI-2 activity and simultaneously began to
variegate for ci.

In D. hydei, Hess (1970a) recovered several instances of variegation of .
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certain of the Y lampbrush loops in translocations to the basal hetero-
chromatin of XL, which is short in metaphase chromosomes in D, hydei,
the major part of the X heterochromatin and the nucleolus organizer
region being in XR. The effective section of the X may correspond to
region hD in the D. melanogaster X chromosome,

The nucleolus organizer has been shown to variegate when moved by
inversion to near the tip of the X. Baker (1971) inferred this from the
lethality associated with In(/)sc*? and In(I)sc" that persisted in variegation-
enhancing genotypes (e.g. XO0) when all possibly variegating euchromatic
loci were covered by duplications. Nix (1973) confirmed the deficit of
rRNA in s¢1/0 first instar larvae. Hannah-Alava (1971) and Breughel
(1970, in D. hydei) both report extreme variability in the salivary gland
chromosome cytological appearance of the nucleolus in transpositions to
euchromatin. Sometimes the nucleolus appeared merely as a puff. How-
ever, it must be noted that the appearance of the nucleolus is extraordinarily
variable even in its normal location.

In summary, certain loci normally located in or very near heterochromatin
can be induced to variegate when repositioned either at a considerable
distance from heterochromatin or within certain other heterochromatic

regions. Except for the X chromosome, the more proximal euchromatin
does not evoke variegation.

D. RELATION OF BREAKPOINT TO AFFECTED Locr
1. Effective Distance
-

How near to a variegation-inducing breakpoint must a locus be to be
affected? The answer seems to depend on the particular variegation-
inducing region, the particular euchromatic region, and perhaps even the
direction from the locus in which the breakpoint lies.

There are several instances of notably great distances. Among these are
the 50-band interval between 4" (4C9-4D3) and the break to the left of
3C5 in In(I)N?64-62, the 35-band interval between cx” (in or to the left
of 5B), and the break to the right of 6A2 in Dp(1;4)N?¢4-85 (Demerec,
1940), the 67-band interval between the most distally affected band,
2B14, and the break to the right of 3ES5 in T(1;4)wm258-21' (Hartmann-
Goldstein, 1967), and especially the 80-band interval between ac? (1B1-2)
and the breakpoint in 3A in Dp(1;f)R. The first of these, an X inversion,
is cited as having its right break between 20B and C, which can best be
interpreted as meaning “somewhere to the right of 20B”. The next two
include an insertion and a reciprocal translocation in the part of the fourth
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chromosome that is often broken but represented in the salivary gland as a
single interband between 101F and 102A1. The last again involves a break
in basal X chromosome heterochromatin, but in a chromosome retaining
the reverse repeat of the heterochromatin through section 20A1 on the
other side of the centromere of the original chromosome, a ring.

Other instances of long distance propagation of the variegation effect
are afforded in other species. In D. wirilis (Baker, 1954), the pe locus is
distal within the basal heterochromatin of chromosome 5. Two T3, 5)pem,
numbers 4 and 53, show only a small amount of translocated hetero-
chromatin in the pe™-carrying element in ganglion prometaphases. How-
ever, T(3;5)pem"! has a break at the extreme proximal end of -the hetero-
chromatin, which comprises almost half the length of the normal chromo-
some 5. Similar cases exist in D. hydei. For example, a break leaving the
proximal quarter of Y" attached to Y® nevertheless led to inactivation of
the noose-forming site in Y® in most males (Hess, 1970a).

On the other hand, the effect often does not extend for more than a
very few bands and may not even extend to the band adjacent to the break
except under conditions that are generally strongly enhancing, for example
white mottling in In(1)rst*® occurs only in X0 males. :

Variegation induced by a Y chromosome breakpoint is often closely
localized. For example, su(w®) ( ID4-1E1-2) is included in the very
extensive region of variegation in Dp(/; f)R. Rayle and Green (personal
communication) studied a series of 4 su(w)” and 3 su(w")* Dp(1; Y)'s
formed from an X Y* Y® chromosome, with right hand breakpoints to the
right of su(f) and thus either in what basal X heterochromatin remained
in the compound XY or in the Y distal to the KL region, or more proximally
in the single su(w")¥ Dp(l;f) recovered. Strong variegation accempanied a
break in the 1E3-4 doublet. Weak variegation sometimes but not always
accompanied a break separating the doublet from 1ES5. No break separating
1E1-2 from 1E3-4 was recovered giving a variegated phenotype, perhaps
because such close proximity inactivates su(w”)* in all rather than only
part of the eye tissue.

2. The Spreading Effect

Whenever the affected locus is several bands from the nearest break, what
of the intervening loci? Can the inactivation process skip over them? An
answer requires a judicious choice of test situations. If a hemizygous
viable inversion or homozygous viable translocation were found with one
or more essential (“lethal”) loci between the breakpoint and 3C2, with
striking white locus variegation in eye, testis sheath and Malpighian
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tubule in live adults, it would not mean that those lethal loci were not
variegating. It would mean that their normal action was not essential to
the development of the eventually pigmentless cell-lines in eye, testis
sheath and Malpighian tubule after the time that the chromosomal basis
for inaction of the white locus was established. Considerable cell death
may have occurred in those tissues to which normal action of these loci
is essential.

In point of fact, as Hannah pointed out in 1951, no viable X-chromosome
inversion giving a position-effect on white has a breakpoint to the right
of 3C5—the lethality associated with inaction of the entire 3C3-6 region
(Lefevre and Green, 1972) must apparently be expressed in all or some of
these tissues.

A proper assay system then requires a tissue in which both affected loci
normally act at approximately the same time in the same cells, or at least
in the same cell lineage, during a period in which the physiological basis
of gene inactivation is not altered. Such a condition is realized in the eye
for many pigment and facet arrangement loci, or in the hypoderm for
bristle shape and pigment loci, when the variegation is coarse grained
(large-patch) rather than fine grained (“pepper-and-salt”).

Demerec and Slizynska (1937) reported the first observation of the
spreading effect. In 7'(/;4)wm268-18 the distal tip of the X, to 3C3, is
translocated to 101F. The areas of the eye with the rough phenotype,
associated with deficiency or mutation in 3C3-6, were larger than, and
completely included, all areas that were white. Although consistent with
the hypothesis that the euchromatic region rendered inactive in a cell has
uninterrupted contiguity with the breakpoint, though the extent of*this
inactivation differs from cell to cell, this single instance is subject to
alternative explanations. For example, the inactivated chromosome regions
may indeed always be contiguous but, if so, they may always be of the
same extent—inactivation of the 3C5-6 region by the distally placed
heterochromatin of 101F might instead have been invoked to explain the
pigmented but roughest regions. Or, alternatively, loci in 3C3 may be
inherently more susceptible to inactivation than w in 3C2. Other rearrange-
ments with other breakpoints, or other modes of observation of the variega-
tion phenomenon were required to settle the point. For this particular
translocation, Schultz (1939) noted that the translocated X tip was well
banded in the salivary gland chromosomes to a point in region 3C which
varied from cell to cell; the entire part nearest the breakpoint was often not
visible at all (““heterochromatized™) and presumably not polytenized.

For a somewhat different translocation, (7(/; 4)w™258-27) with X break
at 3E5/6, Hartmann-Goldstein (1967) published a very extensive study
of the extent of “heterochromatization” in the salivary gland cells of flies
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subjected to a variety of conditions. Band “3C1”
(polytenized) in more cells than was 3C7, and was always visible when
3C7 was visible, The cytological “variegation” correlated well with the
extent of white and Notch-variegation (see Section III1, B).

When variegation is induced at both ends of an insertion, as in
Dp(1; 3)N264-58 o+ and fa* can be inactivated separately: all four possible
combinations (w* fa*, g* Ja, w fa* and w fa) of phenotypes can be found
in patches of the eye (Cohen, 1962). Panshin (1938) found extreme white
variegation—with g+ suppressed in nearly all the eye—to result from the
replacement of the dista] part of the X tip in T(1; 4)yw™1 (in which 3C2 is

was clearly visible

» and implies
act as separate origins of inactivation
not rigorously synchronized, of the “euchromatin”

adjacent. Loci nearest the boundaries of the insertion a

- non-variegating insertion, with the same proximal boundary, into the

midst of 2R euchromatin (Ratty, 1954). The left end of this insertion can

to some extent cover 6 of the z-g essential loci (Kaufman, 1970) although
bands corresponding to the two left-
gland preparations.

An interesting but as yet barely examined question concerns whether a
comparable spreading effect exists for the variegation of heterochromatic

loci. It is likely that the basis of their variegation is distinct from that of
euchromatic loci. It would then i

most are never seen in salivary

chromatin may not be so uncongenial to the action of others similarly
situated.

In the single instance in which it is quite clear that the heterochromatic
loci are indeed normally all active at the same time in the same cells, the

translocation mentioned in the previous section,
unfolded. Sometimes al] were active, and sometime
from the breakpoint (Hess, 1970a).

occasionally the loops
s only the loops farther
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II. The Variegated Phenotype

A. VaARIEGATION Is LocALIzED GENE INacTIVITY

has come to examine this assumption.
This examination can be conducted criticall

y only in a test system that
limits the detectable variegation to a single loc

us, and thus we use hetero-

i
phenotypic consequences,

Probably the most clear-cut demonstrations of reduction, but not
qualitative alteration, of gene product by the locus subject to variegation
are given for the enzyme loci Amy and Pgd. Bahn ( 1971) electrophoresced
heterozygotes for T(1;2)OR32, which brings the Amy? allele of the amylase
locus near X heterochromatin, and a normal second chromosome bearing

¢ allele, scoring individuals with various sex-chromosoge

0 permit comparisons. The intensity of the
my? amylase allozyme was directly related

that elicit variegation of s¢, dor and pn in Dp(1; f)R—low t
X/Dp/0 males—reduce the measurable specific activity of 6-phosphoglu-

conate dehydrogenase by roughly 259, of its activity in X/Dp/Y males.

When the X chromosome carried PgdB, the activity of the allele Pgd* in

the duplication could be distinguished, though not Quantitated, on

electrophoretic gels. The A and hybrid bands were lighter in X0 than
in XY males,

of the whole fly, the enzyme loci in

hypomorphs, genes of qualitatively
identical but Quantitatively lesser effect than wild type (Muller, 1932).

This had been shown much earlier for “morphological” loci, e.g. the
forked locus in an extensive study by Belgovsky ( 1946). Whole-fly hypo-
morphism is the consequence, most probably, of the averaged effects of
two kinds of cells in which the locus is normally expressed—cells in which
the locus is fully active and cells in which it is inactive. This is the simplest
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conclusion to be derived from the many observations of variegation as a
mosaic of wild-type and amorph mutant phenotypes.

Judd (1955) compared the phenotypes of T(I;4)w™25-21 containing w*,
w* or w in the translocation when heterozygous with an array of white
alleles including w*, #® and w. In each case, the phenotype was that
expected from uniform action of the allele in the normal chromosome and
full action in some cells, complete inaction in others, of the allele in the
translocation.

In an electron-microscopic study of the anatomy of white variegation in
w/w; Dp(1;3)N?44-58, Shoup (1966) found that whole ommatidia resemble
either Oregon-R or w ommatidia, all pigment cells having the complete
granule complement of one or the other. When more than one locus may
have been variegating, in T{(/; 4)w™258-18 Gersh (1952) found that the two
primary cells of a single ommatidium could be of different phenotype—
the one fully pigmented and the other white—but that in the mutant
regions some of the secondary cells showed a third phenotype, with many
pale granules.

There are even instances in which the most extreme available point
mutant is not an amorph but a hypomorph, such as c¢i. For example,
triplo-4 ci/cifci are less extreme in phenotype than ci/ci. There are some
T(ci*) giving more extreme phenotypes, such as T'(ci*)/ci, than eeen in
cifci, although T'(ci*)/ci/ci is always less extreme than T(ci*)/ci (Stern
et al., 1946). This is at least partly attributable to complete inactivation of
the ci locus in the translocation in some cells, although inactivation of
adjacent interacting loci may also contribute (see Section II, E).

B. Tissug DIFFERENCES IN SUSCEPTIBILITY
TO INACTIVATION

Variegation of a locus can be detected in every organ of the fly in which
the locus normally acts. However, the level of variegation characteristically
differs from one organ to another so that the locus is very frequently inactive
in one, but very infrequently so in another,

Here again the white locus has been the most extensively studied. It is
expressed in eye, Malpighian tube, and testis sheath; within the eye it is
expressed in the pigment cells of every ommatidium. In addition, its
condition in salivary gland chromosomes can be observed. There are
regional differences within the eye. For several different rearrangements
the posterior region of the eye is more likely to be pigmented than any
other, occasionally the entire remainder of the eye being white. The antero-
ventral sector is most often white (Gersh, 1952; Becker, 1961). The eye
as a whole is the organ in which the highest proportion of cells are white.
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The proportion of mutant cells in testis sheath is lower (Hessler, 1961)
though it has not been compared to those in the Malpighian tubes (or,
of course, in the salivary gland) of the same animal. For T(1; 4ywm2e8-21
Schultz (1956) reported that when far more than half the area of the eye
Wwas mutant, pigment nevertheless occurring in sizeable patches, approxi-
mately half of the Malpighian tube cells were white in a fine-grained,
each-cell-on-its-own mosaicism. The average percentage of white cells in
the Malpighian tubes is virtually the same as the average percentage of
salivary gland nuclei in which the 3C2 band was not clearly distinguishable,
in larvae (Hartman-Goldstein, 1967). Breughel (1970) noted that for the
various white-mottled rearrangements in D. hydei, a pepper-and-salt
mosaicism in the eye accompanied a high ‘proportion of white cells in
the Malpighian tubes while a large-spot mosaicism in the eye accompanied
few and scattered white cells in the Malpighian tubes.

Factors which increase w*-locus inactivity in the eye do so also in the
testis sheath (Hessler, 1961) and Malphighian tubes (Schultz, 1956), and
lead to “heterochromatization” (probably lack of polytenization) of 3C2
in a higher proportion of salivary gland nuclei (Hartmann-Goldstein, 1967).
However, for individuals of a single genotype reared under similar
conditions, there is no further correlation between the extent of variegation
in these various tissues (Hessler, 1961; Hartmann-Goldstein, 1967)
signifying that the inactivation process occurred independently during the
development of the separate tissues. Yellow pigment develops earliest in
the Malpighian tube, before the larva hatches from the egg. In the eye,
the pigments begin to appear half-way through the pupal stage, and appear
synchronously throughout the eye even though the ambient temperature
is so low (14°C) that the time from puparium formation to eclosion of the
adult is extended to 13 days (Gersh, 1952). Pigment (sepiapteridine) appears
last in the testis sheath, during the first day after adult eclosion. Thus, no
clear correlation exists between the time of onset of pigment formation
and the tendency for w* inactivation although there may be a relation
between the latter and the number of mitoses in the ancestral lineage of
the indicated cell.

Another locus, y, has been studied for its tendency to variegate in
different parts of the body. Noujdin (1936) noted that the probability of a
bristle being yellow (due to In(l)sc?) depended on its position in the
mesonotum. Gsell (1971) ranked the probability of bristles being yellow
(again, due to the same sc® heterochromatin-euchromatin junction, but
translocated to the tip of Y" and in a variegation-enhancing genotype)
from highest (71%) in the genital arch and claspers; next highest in the
four regions: anal plate, antennal segment II, anterior edge of the wing,
and sex comb; less in the outer edge of the femur; still less (11%) in
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antennal segment III; to rare occurrence in abdominal tergites or sternites.
He did not rank any part of the mesonotum.

One last example of variegation in different tissues: Clancy (1964)
observed that translocations affixing dor* to the Y chromosome variegate
for dor’, expressed as reduced viability of dor'/T(I; Y). In the survivors,
in which dor* must have been active in a critical number of cells, the eye
pigment is nonetheless strongly variegated.

C. VARIEGATION WHEN POINT MUTANTS HAVE
VARIABLE EXPRESSION

Often, variegation of a locus is manifested by.its quantitative effect on a
trait, the cells in which the locus is transcribed being distant in time or
place from the region in which the phenotypic effect is displayed. Thus,
the v* cells of the fat body in which tryptophan pyrrolase is formed are
remote from the eye in which ommochromes are formed and the cells
in which &* acts are not necessarily those forming the cubitus vein. And,
in both cases, variegation has been identified through quantitative (and
variable) reduction in the product.

In the case of vermilion, variegation in the strict sense could easily be
demonstrated by fluorescence of the kynurenine-producing cells of the fat
body (Rizki, 1961). The tryptophan pyrrolase specific activity was found
to be about 509%, of normal for the v locus in T(1; 2)ras¥ and about 809,
of normal in T(/; Y)y* Yv* (Tobler et al., 1971), while still subject to
the usual dosage compensation mechanisms. Nevertheless, I do not know
of any direct attempt to visualize mosaic expression of this locus in these
rearrangements in the fat body.

It would also be possible to screen for mal variegation of the Malpighian
tubes directly by histochemical means. Janning (1972) has shown this to
be feasible by correlating the loss of the ring from R(1)2/y w mal females
with loss of stainability for aldehyde oxidase in individual cells, using w*
as a marker for the ring. In other tissues in which w is not expressed,
mosaicism for aldehyde oxidase was still evident.

Another measurable reduction in gene product associated with variega-
tion has been shown for ribosomal RNA in In(1)scS and In(1)sc™?® (see
Section II, C,2). Nix (1973) found that third instar y 5¢51/0 larvae have
about 85% as much rRNA per wet weight as their y scS1y*Y controls,
although he showed the number of rDNA cistrons to be normal. 4S RNA
was unaffected. The reduction in ribosomal protein was even more severe.
Puckett and Snyder (1973b) have evidence that the sc$? /0 embryo synthesizes
so much less rRNA during the first five hours of embryogenesis that the
newly hatched larva had 149, less rRNA than In(1)di-49 + In(1)BM1j0
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controls, after each was standardized against its female and metafemale
siblings. The rate of synthesis after the first five hours was the same. It is
possible that transcription was initiated later in most cells of the sc52/0
embryo, so that the difference is ascribable solely to different durations of
transcription. In this case, descendants of cells that transcribed rRNA
normally in the embryo subsequently cease transcription in sc57/0 larvae,
so that the 149, difference persisting in the newly hatched larva is not
virtually obliterated by late third instar. It is also possible that the popula-
tion of cells particularly active in transcribing rRNA during the latter
three-quarters of embryogenesis is one in which the rDNA cistrons are
not inactivated in the sc$ chromosome. Other cell types, normally particu-
larly active in rRNA transcription in the earliest hours after blastoderm
formation, less active in the latter part of embryogenesis, and reactivated
during larval development, may be those more susceptible to nucleolar-
inactivation in the scS! chromosome,

Meanwhile, the eggs produced by scS7 or scl® mothers have a relative
deficit of rRNA at the time of fertilization. The normal oocyte eventually
has roughly 1-9 x 10 ribosomes, synthesized for the most part by the 15
polytene nurse cells (Klug et al., 1970). The supply is sufficient to sustain
development through most of embryogenesis, since y sctr sc82/0, totally
lacking in rDNA cistrons, die as early first instar larvae or late embryos
[distinguishable from their nucleolus-organizer-bearing sibs by yellow
mouthparts (Barr and Markowitz, 1970)].

Puckett and Snyder ( 1973a) compared the rate of synthesis of rRNA in
ovaries of females homozygous and heterozygous for sc57 or sc28. The rate
of synthesis was the same in whole ovaries, but the total amount synthesized
in homozygotes was less than 909, of the amount synthesized in hetero-
zygotes. Unfortunately, the other chromosome in the heterozygote in this
study was FM6, which is derived from In(1)sc®, suggested by Baker to
have a less severe position-effect on the nucleolus organizer. The difference
between homozygous and heterozygous sc5! ovaries could well have been
greater if a clearly non-variegating balancer chromosome had been used.

However, in the numerous cases of loci whose mutants themselves have
quantitatively variable effects, and whose RNA or protein products have
not been identified, the possibilities for distinguishing between position-
effect and point mutation (near or at the breakpoint of a rearrangement)
are limited and not often decisive. Classic cases are offered by 4, ci (the
“Dubinin effect”) and sc. For all of these, the point mutant itself has a
variable expression. At least one T'(3; 4)h" with “weakened dominance”
(i.e. when heterozygous with # it showed a slight increase in the number

of hairs in several of the sites affected by the locus) was employed in the
crossover demonstration that the allele in the translocation was the wild
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type 4*, whose normal function was blocked because of proximity to a
heterochromatic breakpoint (Section II, A.1). Yet the variability of the
position-effect phenotype is often no greater than that of the point mutant,
while its average expression may be even more extreme. The decision that
a given case results from position-effect variegation must then often rest,
rather insecurely, on the nature of the rearrangement putatively generating
it and on the modifiability of expression by factors commonly affecting
known cases of position-effect variegation (see Section IV). And these
studies, since expression is so variable, usually involve comparison of
siblings some of whom have the rearrangement genotype and others, a
“standard” homozygous genotype.

D. HomozycoTes, HEMIZYGOTES AND HETEROZYGOTES

In any large-scale attempt to induce variegation for a particular locus,
more than half of the rearrangements so induced are lethal as homozygotes
(or hemizygotes). This is easily understood as extreme variegation for
essential loci that lie nearer the breakpoint than the locus under study.

For those rearrangements that can be obtained as homozygotes, the
phenotype of the homozygote can be compared with that of the hetero-
zygote with the amorph allele on the normal chromosome. When hemi-
zygotes can be obtained, the phenotype corresponds more closely to that
of the homozygote. In the majority of cases, the homozygous rearrangement
gives the more nearly wild-type phenotype. The obvious interpretation is
that the inactivation of the locus is a separate event in each homologue
and the presence of one active locus guarantees the dominant phenotype.
Among examples of this uncomplicated homozygous expression can be
cited the large-spot white variegations (Hessler, 1961; Spofford, un-
published observations; Breughel, 1970 for D. hydei), hairy (Dubinin and
Sidorov, 1935; Jeffery, 1972), roughest (Kaufmann, 1942), and most
instances of brown variegation (Slatis, 1955a).

Fine mosaicism (“pepper-and-salt”) of the white locus tends, on the
other hand, to a more strongly mutant expression in the homozygote,
both in D. melanogaster (Schultz, 1939) and in D. hydei (Breughel, 1970).
In the small number of cases at hand so far in D. hydei, fine-grained
mosaicism is associated with breaks at some distance away to the right of
the white locus while large spots are associated with a break to the left.
Breughel suggests the difference in homozygous expression may result
from a regulatory locus for white lying to the right of the structural locus.
The regulatory locus in the normal-sequence chromosome would be active
even though the structural locus was mutant so that in the heterozygote
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E. “DoMiNanT’’ VARIEGATION

There are at least three cases, two of them well documented, in which,
apparently, the variegation is dominant, e.g. ¢ bplg* bp* in Baker’s
terminology (or R(g)/g* in Stern’s) shows mutant expression when the
mutant g is itself normally recessive to &". These three cases concern the
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lack of success, these being the very loci used in the crossover demonstration
that their variegation was a position etfect (Section II, ALl

1. Cubitus Interruptus

Hochman (1971) places the ci locus somewhere in 101F-102A1-2 since
it is uncovered by the deficiency M(4)8%, The heterozygote M(4)83ciP
is viable and has a phenotype like +/ci?, less extremely mutant than ci/c:?.
There is thus a distinct locus at which mutation (probably hypomorphic
or amorphic, since the ¢? lethality involves at least two complementing
essential loci) dominantly gives rise to a ci-like phenotype. For purposes
of discussion, T will call it Su(ci*). One of many speculations on the
function of the type allele at this second locus is that its product is necessary
for normal function of the ¢ locus in both cis and trans position, and is
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present in limiting amounts so that less ¢i* or ¢f activity results when less
Su(ci*)* product is made.

Typical recessive variegation of ¢i* requires a break to the left of 101F.
However, a less striking but no less real variegation resulting from a trans-
location induced in a ¢/ chromosome can also involve breaks just to the
left of 102B1 (Stern and Kodani, 1955). This variegation can be expressed
whether the normal sequence chromosome carries ¢ci* or the hypomorph
ci. Stern and Kodani (1955) also found three variegating R(ci*)’s with
breaks just to the left of 102B1, but did not report the phenotype of these
in R(ci)* [ci*. Breaks immediately to the right of 102B1 sometimes gave a
weak R(ci) variegation when in combination with ci.

It seems to me likely that it is the Su(ci*) locus whose variegation is
responsible for the effects in R(ci)/ci* genotypes. I would suggest 102B1 as
the likely position for this locus. In R(ct)/ci inactivation of either the
hypomorph ¢i or Su(ci*)* would contribute to the phenotype.

2. Brown

Almost half of the rearrangements induced in bw* chromosomes that
variegate for brown do so even when heterozygous with a bw* chromosome
(Slatis, 1955a). The rate at which dosinantly variegating rearrangements
can be induced is the same whether the brown locus is occupied by the
wild-type or the amorph allele. Slatis noted that the dominance of the
variegation increased with the distance of the break from the probable
locus of brown, to a maximum at about 6 bands away on either side. The
phenotypes of most of the possible homozygotes and heterozygotes for
hypomorphic or amorphic alleles or for +wo variegating rearrangements
could be reconstructed by postulating for each rearrangement a particular
value for the dominant effects (bw* inactivation regardless of cis or trans
relation to the breakpoint) and a separate additive value for the ““recessive”
effects (limited to the cis bw*). This lends credence to the idea that two
distinguishable loci, both affecting bw locus function (one being bw) are
subject to inactivation in these rearrangements. In fact, since there are
two regions of maximal dominant effect, the second locus affected in
some instances lies to the right of bw and in others, to the left. Presumably
both “second” loci would rarely be affected by a single break.

A candidate for one of these bew-regulating loci is listed by Lindsley
and Grell (1968) as Su(bw"?). The mutant, discovered by Kadel (1959),
has many of the recombinational and reversional properties of a duplication,
and is placed at 2-105-2, 0-7 units or, very approximately, 10 bands to the
right of bw. For the sake of constructing a plausible hypothesis, we can
assume the mutant discovered to be a hypermorph if indeed it is a duplica-
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at various larval ages. Bryant obtained five Spots and the latter investigators,
two spots, each spot representing the descendants of one of the daughters
of an irradiated cell in the newly hatched larva. These spots varied con-
siderably in size, depending on position, but suggest the presence of from
3 to 10 mesonotum progenitor cells in the newly hatched larva, The average
spot size was halved when crossovers were induced at the end of the first
larval instar, signifying the occurrence of at least one round of mitoses
during the first instar. The usual clone shape is rather square, but the
boundaries are irregular and vary from fly to fly. The rough correspondence
between the number of semi-independently variegating regions and the
estimated number of progenitor cells indicates that the decision for later
activity of y* and ac* in the sc® tip had been made by the time the larvae
hatched and could have been made at the time of blastoderm formation.
The cells of the wing disc anlage are probably derived, without division,
from blastoderm cells. Various estimates have been given for the number
of blastederm nuclei committed to mesonotum formation, based on the

Merriam, 1969, or 17—Ripoll, 1972) or crossover spots induced in early
embryos (2 or 3 nuclei—Bryant, 1970). Since irradiation of early stages
delays development and probably causes cell death, the higher estimates
probably come nearer the mark for normal development.

On the other hand, the decision even for this same euchromatin-
heterochromatin junction can be much later. In a much more recent study
of sc¢® Y-induced y-ac variegation, Gsell (1971) reported that the average
size of mutant spots was similar to that Bryant and Schneiderman (1969)
generated by inducing crossing over in the latter part of the second larval
instar, but that the variegational spot sizes were quite variable,

The time of decision is no later than the end of the first larval instar
for the large-spot eye pigment patterns for w in Dp(1;3)N264-58 in D,
melanogaster and pe in T(Y; 5)pe™ in D. virilis (Baker, 1967). The bound-
aries between mutant and non-mutant variegational spots in the ventral
half of the eye follow the outlines of clonal twin spots resulting from
somatic crossing over induced at that time (Becker, 1957 and 1961; Baker,
1967), when there are eight progenitor cells. Twin spots induced at the
same age in the dorsal half of the eye are irregular in location and contour
and often not contiguous, as if cell migration has not yet ceased. Even in
the pepper-and-salt mottled T(1; 4)wm258-18  the gverall probability that
the white locus will be inactivated in individual cells later is determined
by this time, whole clones having consistent levels of white-spotting—
anteroventral clones having the highest and the tiny posterior clone the
lowest (Becker, 1961).

The same distribution of probabilities of mutant expression accompanies
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merely indicate the latest time at which the decision, tentatively made at
first, is customarily confirmed, subjectto later revision only as environmental
circumstances dictate, I know of no evidence incompatible with the early
tentative decision occurring at the time of blastoderm formation, when the
supply of nuclei for each of the imaginal disks (Garcia-Bellido and
Merriam, 1969) is adequate to account for the amount of variation in total
proportions of mutant and non-mutant tissue in the adult phenotype.
Schultz has repeatedly called attention (e.g. in Hadorn et al., 1970) to
the fact that mutant areas are larger in those organs and in those parts of
organs that undergo the larger number of mitoses in development, as if
the time of decision was much the same for all organs,
The one study in which the reversibility or irreversibility of the inactiva-
tion process might hope to have been settled is unfortunately equivocal.
Gsell (in Hadorn et al., 1970; Gsell, 1971) has conducted an extensive
series of cultures and subcultures in adult females of individual explants
from various imaginal disks derived originally from two stocks in which the
Y variegation of the sc? tip was genetically enhanced, in one stock on the
sc® Y and in the other on a compound X-Y. He presented six transfer
culture pedigrees, four with over 200 test implants each. The percentage
of yellow tissue in the implants was a characteristic of the subline within a
pedigree, regardless of the types of transdetermination of tissue types
displayed by an implant. Occasional “mutations” occurred in the character-
istic percentage of yellow in some sublines, the new percentage characteriz-
ing the derivative subline. 28 sublines became completely wild-type, with
no yellow spots recoverable in later implants. No subline became completely
yellow for more than one transfer generation—after one generation, these
lines died. The variegating condition continued apparently indefinitely
in other sublines. After 22 transfer generations, one implant was cut in
checkerboard fashion, half the pieces transferred once again and the
other half tested. All the pieces tested still developed mosaic phenotypes
and after the pieces transferred were also cut into checkerboards and
tested at the next opportunity, they too developed mosaic phenotypes.
Gsell interpreted this persistent fine-grained mosaicism as the continual
sorting-out, not completed even after 24 subdivisions of tissue, of cell
lines irrevocably determined before the original explantation. It is much
easier to conceive of cell lines with metastable states of inactivation of the
¥* locus in which the final decision occurs stochastically as the tissues
approach the pupal metamorphosis, with loss of inactivation the only state
stably heritable through repeated transfer generations. -
It may be of value here to digress to position-effect variegation in the
mouse. The c*-locus is included in an insertion of a segment of autosome
into the X chromosome. The insertion is carried as a duplication in Dp;clc
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mice. These mice occasionally display colored spots of half-clone size and,
in clones with the insertion-bearing X inacti

mber in the pigmented clones,
When the normal autosomes carry both ¢* and 2, the first pigmented

hairs to develop in a Previously all-white clone are e b, the p locus being

the farther from a breakpoint. Later, ¢* p" hairs appear (Cattanach,
1974),

of the time of inactivation remain moot.

IV. Factors Modifying Intensity of Variegation

A major frustration in the study of position-
notorious sensitivity of the phenotype to a varj
the rearrangement itself. Elaborate controls are usually necessary to assure
that these (especially temperature, background

genotype, and even specific
details of parentage) are not confounded with the variable under direct
study.

effect variegation is the
ety of factors extrinsic to

-

A. TEMPERATURE

1. Higher Temperatures Usually Suppress Variegation

Temperature was one of the first modif;

ying factors to be reported in the
literature. Gowen and Gay (1934) reported that w™l, wm2, and wm? 4]

displayed larger areas of mutant tissue (w, N, spl, ec) at lower temperatures
than at higher. The typical finding, in most cases, is enhancement of
variegation at lower temperatures and suppression at higher. These cases
include w in many rearrangements, rst in In( I)rst® (Kaufmann, 1942), m in
In(I)m* (Wargent, 1971), pdf in In(1)BY* (Schalet, 1969), Rev® in
In(2LR)rev® (Wargent, 1972), ¢i in numerous rearrangements (Stern and
Kodani, 1955), and the male. ertility factors in several T(Y;4)’s (Benner,
1970). Lethals near g (Gowen and Gay, 1934), near v and near ras (Barr,

a higher fraction of rearrangement-bearing
res. The activity of the enzymes coded by

loci (Gvozdev et al., 1973) in variegating
I temperatures. The inference one would
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However, there are a number of reasons for not expecting a rule such
as that enunciated at the heading of this subsection to be universally
applicable. Many mutants themselves have temperature-dependent pheno-
types. Some are expressed only at higher temperatures and are usually
ascribed to a greater heat-lability of the protein coded by the mutant
allele. Some are expressed especially at lower temperatures and are
usually ascribed to altered kinetics of reactions affected by the mutant or
defective enzyme. For example, It eyes are lighter at higher temperatures.
Gersh (1949) could find no effect of temperature on the /™ phenotype in
T(1; 2)w?58-%, On the other hand, ¢ expression is more extreme at lower
temperatures, so that Stern and Kodani (1955) are reluctant to ascribe the
more extreme expression of R(ci*)/ci at lower temperatures to an effect
on the variegation process itself. The scutellar bristle number in In(I)sct
is related inversely to temperature (Mampell, 1965b), and seems to
depend on the duration of the developmental period.

Furthermore, neighboring loci near a breakpoint may individually
affect the same ultimate phenotype buf in opposite ways. In this case the
phenotype would not change monotonically with increasing temperature.

There are several instances of non-linear temperature effects. The eye
phenotype associated with In(2LR)40d is most extreme in the middle
range of temperatures (Hinton, 1949). Some of the effects of In(/)sc® are
more extreme at extreme temperatures than near 25°C (Gersh, 1949),
although since Prokofyeva-Belgovskaya (1947) finds this to be true also of
the cytological appearance of the tip of this chromosome in the salivary
gland, the interpretation may be more difficult than I have suggested.

Processes which occur in mutant individuals more normally at higher
than at lower temperatures cannot usually be referred to the heat-lability
of individual proteins. If the variegation process in any way depends on
the properties of temperature-senstitive proteins, these proteins would
most likely have roles in the inactivation process. One, perhaps relevant,
type of process that is sensitive to cold, for which mutants may be especially
sensitive, is the self-assembly of protein molecules into aggregates of
specific three-dimensional form. Frankel (1973) reports a mutant Y-
fertility factor whose sensitivity to cold occurs at the time of organelle
formation during spermatid maturation. So, an examination of the
temperature sensitivity of particular variegation systems at different stages
of development is in order. :

2. The Temperature Sensitive Period

The stages of development in which temperature is critical to the variegated
phenotype have been examined for few systems other than those giving
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white mottling: T(1;4)yw™ (Chen, 1948), T(1; 4)wm266-18 (Chen, 1948;
Becker, 1961), T(1; 4)ywm268-21 (Schultz, 1956; Hartmann-Goldstein, 1967),
and Dp(1; 3)N2e4-68 (Janning, 1970a; Spofford, unpublished observations).
Chen, Becker, and Janning agree in finding a major period of temperature-
sensitivity during the first two days after puparium-formation, The most
extensive data were given by Chen, using larvae all of whom had eclosed
from eggs laid and kept at 25°C, When part of the temperature-sensitive
period was passed at 25°C and the remainder at 16-17°C, regardless of

perature (giving greater weight
to the second day of pupation for gm258-18 B¢ weighting the two days

equally for wm5), The period of sensitivity began earlier and continued
throughout pupation when the second or third chromosomes of the stocks
were replaced by bw or s, respectively,

Schultz, Hartmann-Goldstein, and T have also investigated the possible
temperature-sensitivity of embryonic stages, and find the first few hours
after egg laying to be as important as the pupal stage. In the most extensive
of these studies, Hartmann-Goldstein assayed white variegation in
Malpighian tubes, variegation of bands 3C1 and 3C7 in salivary gland
chromosomes in late third-instar larvae, and Notch variegation in adult
females. The temperature-sensitive period for the Malpighian tubes was
completed by 4 hours, although their first visible differentiation occurs
two hours later. The peak
salivary glands occurs within the first 3 hours of embryogenesis, the
sensitivity abruptly dropping by 5 hours of age and ceasing before the
last third of embryogenesis. The Notch phenotype was subject to a peak
of sensitivity within the first three hours, although temperature sensitivity

i » ceasing before puparium formation. The
three hours of embryonic life had the same importance as the entire
remainder of developmental time in the effect on the Notch phenotype.

I examined white variegation in adult eyes in two stocks, one homozygous
for an extreme enhancing allele and the other homozygous for an extreme
suppressing allele at the Su(var) locus (see Section IV, G). Both stocks
showed an early onset of temperature sensitivity, at around the time of
blastoderm formation. In the variegation-enhanced stock, temperature
sensitivity continued throughout larval development, both types of shift
(up or down) being effective and yielding an intermediate degree of variega-
tion depending on the proportion of development undergone at each
temperature. In the variegation-suppressed stock, the difference in
phenotype between temperatures was less and did not permit so critical a
delimitation of the temperature-sensitive period. If the first four hours of
embryogenesis occurred at 25°C, the temperature for the remainder of
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development was irrelevant to the phenotype, which was almost completely
wild-type. If the first sixth of embryonic development occurred at 19°C, a
later period of sensitivity in mid-third-instar could be demonstrated.
These results can be interpreted as indicating that in variegation, some
component of the inactivation process is somewhat thermolabile, this
component being much more thermolabile in the variegation-suppressor
stock than in the enhancer stock. :

Benner (1970) found the variegating male-fertility factors in several
T(Y;4)’s to be less active in primary spermatocytes subjected to lower
temperatures 10 days before the ejaculation of the mature sperm. The
sensitive period is thus around the time of the final mitosis or perhaps
very early in meiotic prophase, during the initial elaboration of the lamp-
brush loops and Y-specific RNA transcription. Transcription probably
continues, however, for several days, if the process in D. melanogaster is
similar to that in D. hydei. ‘ :

Thus, it seems to be a general rule that the temperature sensitivity
precedes the time at which the affected locus would normally be expected
to be transcribed, in some instances by a very long interval. The sensitive
period itself can be of long duration, or divided into two separate periods
of peak sensitivity. These temporal relations must be accommodated by any
hypothesis formulated to account for the variegation process.

B. TuHE Y CHROMOSOME
1. Direct Effect of the Y Chromosome

Just as there is a ““typical’”’ phenotypic response to temperature, so there
is a “typical” response to the Y chromosome, also reported first by Gowen
and Gay (1934) for w™! and w™2. In the vast majority of cases, additional
Y chromosomes in an individual’s genotype suppress variegation, while
fewer than the normal number enhance it. The exceptions are fewer in
the case of the Y chromosome than in the case of temperature, possibly
since the Y chromosome affects the direct expression of far fewer genes
confoundingly than does temperature. Both enzyme loci studied whose
variegating allele product was distinguishable electrophoretically, Amy in
T(1;2)OR32 (Bahn, 1971) and Pgd in Dp(1 ;f)R (Gerazimova et al., 1972),
showed graded increases of activity of the affected allele as the number of
Y chromosomes increased within a sex. For example, for Amy, X0 <
XY <<XYY and XX < XXY. - .
Transcription from the variegating fragment Dp(/;f)R is lower and
more variable in salivary gland cells of XO than of XY males at the same
temperature (Ananiev and Gvozdev, 1974).
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Variegation of some loci in some rearrangements is so extreme that the
phenotype appears uniformly mutant except in the presence of an added
Y; the other extreme condition holds in other cases, the phenotype
appearing wild-type in XX or XY and variegated only in X0. The first
extreme type is exemplified by variegation of essential loci in T, 3)N264-s,
T(1;2)N264-9 apnd T(1;2)N2%4-10 3]l of which can survive only in XYY
males (Schultz, cited in Lindsley and Grell, 1968). The second extreme
type is exemplified by the variegation of the white locus in In(1)rst? only
in XO males (Gersh, 1963). The variegation of essential loci in numerous
positions in the euchromatin genome has been shown to be Y-suppressed-—
near v and ras (Barr, personal communication), between 2 and w (Kaufman,
1970). Lindsley et al, (1960) found that roughly one-fifth of the 45*
sex-linked mutants they recovered as lethal in X0 males were suppressed
to varying extents by the Y chromosome, a result confirmed by Ben Zeev
and Falk (1966). Each Y-suppressed lethal was a rearrangement with at
least one break at some position on the X chromosome and another at the
base of a chromosome arm. One pericentric X inversion required two
Y chromosomes for survival, It seems to me likely that the number of
position-effect variegations appearing lethal in XY males but not in XYY
may be larger than indicated in this study. This is at least one interpretation
of Kerschner's (1949) finding that half as many lethal and visible mutations
were identified in the progeny of X-rayed XYY males as of X-rayed XY
males.

It was once suspected that there would be a difference between the
typical variegation systems and those involving heterochromatic or quasi-
heterochromatic loci in their response to the Y chromosome., Although
there are exceptions to the usual response, they do not all involve hetero-
chromatic loci nor do all rearrangements affecting heterochromatic loci
constitute exceptions. The Y chromosome suppresses both the position
effects on ¢i* tested (R. F. Grell, 1959) in XXYY, XXY and XX females
and most of the position effect on Su(ci®) in comparisons of X0 with XY
(Altorfer, 1967), though weak position effects of the latter were sometimes
unaffected or even enhanced. Baker (1971) found variegation of the
nucleolus organizer in sc8, sc£8 and scS? to be suppressed by the Y chromo-
some. He had earlier found that an additional Y slightly suppressed the
variegation of pe in D. virilis in T (Y;5)pem! (also Schneider, 1962),
Among the exceptions are rearrangements affecting euchromatic, hetero-
chromatic, and quasi-heterochromatic loci. One euchromatic locus with an
exceptional response may be sc. Mampell (1965a, b) reported evidence
strongly suggesting that the Y chromosome enhances rather than suppresses
the scutellar bristle phenotype of In(I)sct. I have repeated his experiments
with stricter controls for other possible modifiers of variegation and find a
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slightly greater reduction in the number of bristles on the vertex of the
head in sc*/Y than in sc4/0 sons of C(/)RM, y w mothers, though not on
the side of the mesonotum or on the scutellum. In both Mampell’s and
my experiments, the possibility remains that the effect is attributable to
the maternal Y chromosome constitution (see Section IV, B, 4).

The Y chromosome enhanced the mutant effect of one of the rearrange-
ments evoking. “‘dominant” ¢f variegation, with a break separating the
presumptive ¢/ and Su(ci*) loci (Altorfer, 1967).

Exceptions among the heterochromatic loci include I/t and the male
fertility factors. The number of Y chromosomes is directly correlated with
the extent of mutant tissue for all /t-variegating rearrangements tested
(Schultz, 1936 ; Baker and Rein, 1962). For the It locus, the Y chromosome
acts as a variegation enhancer. On the other hand, for the male fertility
factors in variegating T'(/; Y)’s in D. hydei at least, extra Y chromosomes
are without effect on the percentage of males in whom the affected
lampbrush loops unfold (Hess, 1970a). The extra Y introduced was a
T(Y; A) with functional but complementary fertility factors.

2. Localization of the Variegation-modifying Regions of the Y

The availability of fragments of the Y chromosome, both free and attached
to other chromosomes, permits some degree of localization-of the sites
on the Y whose hyper- or hypoploidy in the genotype particularly affects
variegation. The available reference points are the nucleolus organizer,
the size of each arm at metaphase, the ability to complement tester-Y’s
deficient for specific male fertility factors, and, in D. hydei, the location
of the specific types of lampbrush loops. Since many of the available Y
fragments include unknown portions of potentially effective basal X
heterochromatin as well, a certain degree of caution has necessarily been
introduced into the interpretation of some of the results.

The initial suggestion that the variegation-suppressing property was not
homogeneously distributed along the entire extent of the Y chromosome
came from a comparison of the effects of fourteen different free Y fragments
(Baker and Spofford, 1959) on the amount of drosopterin in the eyes of
Dp(1;3)N264-528 flies. Although the seriation of effectiveness of these Y
fragments depended to some extent on the type of X chromosome and sex
of the fly, in no series did the effectiveness correlate well with the length
of the Y. Of four ring Y fragments of apparently equal length, containing
all of the KL factors, the one retaining the nucleolus organizer was much
the weakest suppressor. The same Y fragments (even from the same
fathers) that most strongly suppressed w-variegation in Dp(/;3)N264-58
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most strongly enhanced /¢ variegation in T'(2; 3)itm 1% (Baker and Rein,
1962). Those with little effect on ™ had little effect on /™. It is likely
that the same regions are responsible for both effects.

Using variegation of B® in certain rearrangements as his assay system,
Brosseau (1964) found a major suppression site near k/-2 and another of
nearly equal importance proximal to ks-/. Since the nucleolus organizer
can be seen in some of the less efficacious Y¢" rings (Baker and Spofford,
1959), it is possible that the site in Y® is distal to the nucleolus organizer,
It is noteworthy that in the vicinity of k/-2 two apparently antithetical
properties are localized—the property of suppressing variegation due to
rearrangements involving breakpoints elsewhere, and the property of
evoking variegation of at least the ci* gene when the latter is placed distal
to 1t. This paradox is another item of importance to our understanding
of the variegation process.

In D. hydei the cytological locations of the male fertility factors are more
readily visualized and probably more evenly distributed along the Y
chromosome length. Hess (1970) found two major white variegation
suppressing regions on the disproportionately longer Y* of this species,
one midway, between the ““tubular ribbon”’ sites and the ‘““pseudonucleolus”
site and the other very near the distal tip, present whenever the “thread”

site is. In T(/; Y)’s with loop sites inactive but present, the suppressor
sites remained active.

3. Cell Autonomy of the Y Effect

Gearhart transplanted eye disks from w; Dp(1;3)N264-58 larvae into
C(I)RM, y w larval hosts that possessed or lacked a Y chromosome. The
drosopterin content of the implant eyes was the same for both host types
and was little different from that of sibs of the implant donors that had
been allowed to complete their development normally (Gearhart and
Maclntyre, 1971). The effect of the Y chromosome did not pass the disk
boundary.

Even within the disk, the effect is cell autonomous. In Janning’s (1970)
induction of twin spots in Dp(1;3)N?%4-%5_containing larvae, one of the
two X-chromosomes sometimes had a distally-appended Y* or Y", so that
one of the resulting twin spots would have two doses of the Y arm and
the other, none. The spot with two Y fragments was almost always pigment-
ed, while the spot with none was almost always white. This result also
showed that the Y-genotype was of importance to the pigment cell

phenotype after the end of the first instar when the crossing over had
been induced.
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4. Parental Effects of the Y Chromosome

The Y constitution of the parents, particularly of the mother, has proven
to be of importance for the extent of variegation in the offspring. This was
discovered and first extensively studied by Noujdin (1944) for y ac
variegation in In(1)sc® and y variegation in In(I)y*" and has been confirmed
in several other systems although not in all systems in which it has been
checked. A rigorous demonstration of a maternal effect requires that the
individuals compared have identical genotypes and the mothers have
genotypes identical except for presence of a Y in some but not others. It is
not clear to me how well controlled was the autosomal constitution of the
flies compared in Noujdin’s experiments. However, the sex chromosome
constitutions of several matings allow otherwise fairly clear comparisons.
E.g. 406 % of the sc®/sc® daughters of sc®(y ac mothers were mosaic, but
only 4:3% of sc®[sc® daughters of sc®y ac-Y* mothers or 539 of sc®[y
ac'YS, were mosaic. The suppression of mutant expression is probably
attributable to the Y, although other pertinent differences may also
distinguish the y ac-bearing chromosomes. However, though many other
of the comparisons available in his extensive data are consistent with
maternal action of the Y chromosome, all other pairs of crosses listed
differ also in other features that have been shown to affect variegation in
some systems.

Valencia (1947, and personal communication) sought to confirm a
maternal Y effect on expression of a series of ‘““dominant” bw variegating
rearrangements, using a marked Y fragment (sc Y*) and carefully establish-
ing co-isogenicity of the background genotypes of the stocks employed.
No maternal effect could be demonstrated.

I found a definite maternal effect on the w-variegation of Dp(I; 3)N284-58
of C()RM, y w|Y daughters when the only difference could have been
the mother’s Y chromosome. The stocks used were co-isogenic. The
crosses were otherwise identical and simultaneous. Daughters whose
mothers had had a normal unmarked Y chromosome developed more eye
pigment than daughters whose mothers had lacked a Y chromosome.
Daughters whose mothers had had various Y fragments with unknown
additional contributions of basal X heterochromatin developed the greatest
amount of eye pigment. The iso-Y® was one of the strongest suppressors
in these experiments as in Noujdin’s (1944). The ranking of a Y chromo-
some as a maternally-acting variegation suppressor was not the same as its
ranking as a direct suppressor. In the sons of these same crosses, the
maternal and direct effects were confounded, but predictable on the basis
of the maternal effects seen in their sisters and the direct effects ascertained
in the daughters of a different series of crosses in which all mothers carried
a normal Y and fathers contributed the Y chromosomes to be compared.
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Other systems with less el

which mutant expression appears to be

Amy

variegation system employed by Bahn (1971), w™2 in D. hydei (Hess,

1970b), and, by an additional Y, T(1; Y)pe™® in D. virilis (Schneider,
1962). :

A separate effect of the paternal Y chromosome constitution has been
reported by Noujdin ( 1944). When the father’'s X chromosome (not
transmitted to his sons) carried a Y. or Y® arm, fewer of his In(1)y?
sons had yellow bristles than if his X chromosome was normal. The paternal
effect was relatively smaller than the maternal effects reported. No other

worker has reliably confirmed the existence of a paternal effect in any
other system. ’

It would be interesting to discover wh

maternally as a suppressor or an enhancer of (or indeed has any maternal

effect on) variegation of loci such as It with an anomalous response to the
immediate presence of a Y chromosome.

ether the Y chromosome acts

C. THE CENTROMERIC REGIONS oF THE X CHROMOSOME

If the Y chromosome is usually a variegation-
anticipate that mutant areas would be more extensive in normal females
than in normal males, unless some part of the X chromosome were also
to act as a suppressor. Greater mutant expression does occur in females
in many variegation systems, but certainly not in the vast majority of them.
In certain fairly direct comparisons, a single X chromosome has roughly
the same effect as a single Y so that XX and XY have similar phenotypes
for the amylase allozyme coded by the Amy? allele in T(1;2)OR32 (Bahn,
1971), or for the eye phenotype associated with In(2LR)40d (Hinton, 1949),
Perhaps the most striking demonstration is afforded for brown-variega-
tion by a gynandromorph reported by Grell (1958). The gynander was an
offspring of v; In(2LR)bw"P1/S)M ], Cy @ X v/Y/Y; bw 3. The genitalia
were male and the gynander sired offspring. The eye surrounded by female
tissue was full vermilion in phenotype, indicating its karyotype to be XXY.

suppressor, one would

have differed by more than a single X chromosome.
What part of the X is most important to variegation-suppression is not

disclosed in the studies just cited. Early Russian work suggests that the
effective region is in the basal heterochromatin.

Panshin (1938) found that a heterozygous deficiency for much of the
heterochromatin of the X enhanced the white expression of derivatives of

24, POSITIC

T(1, ©yw™ 11, Noujc
never mosaic for
mosaic. He also {
patches of yellow
addition to its dire
daughters of scé/s
likely to be mosaic
similar effect on sc
X, including XR, -
as a free duplicatio
comparing mosaic
extra element. A
reported.

In all these inst
is in the same dire
in which deficiency
rather than enhanc
certain crossover
In(1)sc%8 and the
heterochromatic b
the crossover pro
proximal to the m
inaction of the latt
this suppression m:
action of the X, s
parts of the same ¢

D. Ck
The bulk of the v

has centered on :
thereof. However,
base of 2R—has hi
of assays. Schultz
is a potent enhanc(
with usually simil
of the BSY (Brosse
the 23 Y-suppress¢

A new mutant 1
daughterless E(da)
ized part of the ce
though not conclug




orted but in
by presence
ide the Amy
hydei (Hess,
~(Schneider,

on has been
10some (not
his In(1)yF
I'he paternal
d. No other
ffect in any

nosome acts
ny maternal
ponse to the

MIOSOME

one would
mal females
e were also
- in females
ity of them,
has roughly
phenotypes
R32 (Bahn,
nton, 1949).
wn-variega-
1der was an
he genitalia
d by female
to be XXY.
XY; it was
unlikely to

ssion is not
sts that the

uch of the
rivatives of

24. POSITION-EFFECT VARIEGATION IN ‘“‘DROSOPHILA’’ 991

T(1, 4yw™ 11, Noujdin (1944) found that sc8/sc3[Dp(1; f) females are virtually
never mosaic for y and ac although 6:9% of their Dp-free sisters were
mosaic. He also found that far fewer (16%) y%/Dp(1;f)/Y males had
patches of yellow bristles than did their Dp-free brothers (97%). In
addition to its direct effect, this duplication acted maternally. The sc8/sc®
daughters of sc®/sc® mothers themselves lacking the Dp were twice as
likely to be mosaic (13-9%,) as when the mothers had the Dp. There was a
similar effect on sons. A smaller fragment of the centromeric region of the
X, including XR, with most of XL replaced by the distal part of 4 carried
as a free duplication in the genotype, also suppressed variegation in sc8/sc8,
comparing mosaicism in sisters with (1-7%) and without (13-03 %) this
extra element. A possible maternal effect of this duplication was not
reported.

In all these instances, the effect of the X chromosome, when present,
is in the same direction as the effect of the Y. There is a puzzling situation
in which deficiency for a part of the X heterochromatin appears to suppress,
rather than enhance, a variegation suppressed by the Y. This is the case of
certain crossover products retaining the left end of either In(I)sct or
In(I)sc™® and the right end of In(l)sc”2. Although what is known of the
heterochromatic breakpoints of these inversions strongly suggests that
the crossover product is deficient for a part of the heterochromatin
proximal to the nucleolus organizer, the lethality associated with relative
inaction of the latter is greatly reduced (Baker, 1971). The mechanism of
this suppression may be quite unrelated to the other variegation-modifying
action of the X, since here the modifier and the variegating region are
parts of the same chromosome, though at opposite ends of it.

D. CENTROMERIC REGIONS OF AUTOSOMES

The bulk of the work on ‘““heterochromatic” modification of variegation
has centered on added or subtracted sex chromosomes or fragments
thereof. However, at least one autosomal heterochromatic region—at the
base of 2ZR—has had effects similar to the Y suppressors in a limited series
of assays. Schultz (in Morgan et al., 1941) reported that Df(2R)M-S2%
is a potent enhancer of variegation. It has been assayed on several systems
with usually similar effect, for example on Bar in variegating derivatives
of the B°Y (Brosseau, 1960). Lindsley ez al. (1960) found it enhanced 18 of
the 23 Y-suppressed lethals they tested.

A new mutant reported by Mange and Sandler (1973), Enhancer-of-
daughterless E(da), is a T'(2;3) with breaks in 66C and in the non-polyten-
ized part of the centromeric region of the second chromosome, probably
though not conclusively in 2R. It enhances the mutant da (whose effects
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are slightly suppressed by the Y) and suppresses the mutant abo (also
suppressed by the Y), both mutants at loci that have been implicated in
the regulation of heterochromatin although not themselves position effects.
One might predict that E(da) is ituelf a position-effect resulting from the
relocation of a normally heterochromatic locys j

region at the base of 2R. In(2LR)Rev®, with a

of 2L, increases the frequency and size of mutant
patches due to variegation of the m locus at 10E1-2 in In(I)m*, and

decreases by 20%, the DNA amount (hence, level of polyteny) of the more
distant band 10D1-2 in the salivary gland chromosome (Wargent et al.,
1974). Duplications for the base of 2R are suppressors (Hannah, 1951

E. PARENTAL Source or REARRANGEMENT

Transmission per se through e
influence the susceptibility of v
a later inactivation. These have

gg rather than through sperm seems to
ariegating loci in some rearrangements to
been called parental source effects. They
y in reciprocal crosses in which parental
d other genetic factors known to affect the
ile only the rearrangement (preferably

autosomal in mode of inheritance) itself is introduced paternally in the one

cross and maternally in the other.

The autosomally inherited Dp(1;3)N264-58 ig subject to a parent source
effect. When other factors are controlled, the mutant areas for all variegat-
ing loci in all target organs examined are more extensive when the Dp is
transmitted through the egg than through the sperm (Spofford, 1959,
1961; Hessler, 1961 ; Cohen, 1962). Baker (1963) ruled out any mechanism
that may depend on prior conditioning of egg cytoplasm by pre-meiotic
presence or absence of the rearrangement. He crossed Dp/+ Q x WiDp &
and compared W and non-W sons, Since homozygosity for Dp is lethal to
males, W sons have a maternal, and non-W sons a paternal, Dp. The latter
had 4 to 5 times as much pigment as the former. Lest the difference be
attributed to the W-bearing and the unmarked third chromosome, the
reciprocal cross was also examined, with the same reduction of mutant
expression with transmission through sperm.

A parent source effect cannot be clearly found, disentangled from other
modifying effects, in Noujdin’s (1944) data. Heterozygous daughters of
sc®ly ac mothers were as often mosaic when they had inherited their s¢®
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chromosome from their father (43-99%, from crosses to sc®/Y) as from their
mother (40-0%, in crosses to y ac/Y). However, Prokofyeva-Belgovskaya
(1947) found that the distal end of the sc® chromosome, comprising 1A-B1
and section 20 in the salivary gland, was ‘“heterochromatized” in 719% of
the larval daughters with the paternal rearrangement but in only 20%, of
the larval daughters with the maternal rearrangement.

Schneider (1962) looked for parental source effects on several re-
arrangements giving pe variegation in D. virilis. She found the phenotype
most nearly wild-type when the rearrangement was inherited from a
homozygous mother. However, the comparisons of heterozygous parents
and of homozygous with heterozygous fathers differed from one rearrange-
ment to another, leaving it unclear whether the source of the rearrangement
or some other unidentified genetic difference between the stocks crossed
was the chief source of the difference. A similar uncertainty exists for a
possible parent source effect on the y-variegation of In(l)sc5!* sc®F + S,
scST s¢® w" B (Basc) reported by Liining (1954).

Tt is interesting and I think not irrelevant to note that a parent source
effect has been reported for the mouse variegation system cited earlier
(Section ITL.F). Cattanach and Perez (1970) were able to demonstrate for
T(1;X)ct that the fraction of pelt in which the ¢* allele, in the inserted
duplication, was inactive was higher when the duplication was derived
maternally rather than paternally. This was true whether the paternal
Dp-bearing daughters had had Dp-bearing mothers or not. This finding
may be causally related to the visible differences in the degree of condensa-
tion of the paternal and maternal sets of chromosomes in colchicine
metaphases of the first cleavage of the mouse zygote (Nesbitt and Donahue,
1972). The paternal set was the less condensed, although the quinacrine
banding pattern was the same in both sets. In both the mouse and
Drosophila, sperm maturation includes the replacement of the normal
histone components of chromatin by a more arginine-rich sperm histone
(Bloch, 1969); there is no similar near-total replacement of the non-DNA
components of chromosomes yet identified in oogenesis. This aspect of
the different histories of chromosomes in transit through spermatogenesis
and oogenesis can be expected to assume importance in a final understand-
ing of parental source effects.

F. Homozycous vs. HETEROZYGOUS MOTHERS

In two situations investigated, the variegation was more extreme in
offspring of mothers heterozygous rather than homozygous for the
variegation-inducing rearrangement. In a number of paired crosses,
Noujdin (1944) recorded a higher fraction of mosaicism in offspring of
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sc®ly ac mothers than of sc®/sc® mothers, e.g. 6:7% vs. 0-6% for sc8/Y
sons, 40:6% vs. 13:99, for sc?/sc® daughters, 40-0%, vs. 4-8%, for sc®/y ac
daughters. Hessler (1961) found a much higher level of eye pigment in
sons of mothers homozygous for Dp(/;3)N264-58 than in sons of hetero-
zygotes. Other factors later discovered that might have also differentiated
these paired crosses (such as at the Swu(var) locus described in Section
IV, G) would have reduced, rather than exaggerated, the magnitude of the
difference measured. On the other hand, when I attempted to assess the
true magnitude of the effect to be ascribed to maternal homozygosity
versus heterozygosity in crosses controlled for the Su(var) locus (Spofford,
1966), I was unable to demonstrate any difference at all.

G. OTHER GENETIC MODIFIERS

A number of other, usually less well-defined, differences in the “genetic
background” have been contributed by the various stocks whose inter-
crosses have revealed the types of genetic effect on the variegation phenotype
itemized thus far. Allelic differences at loci scattered through euchromatin
as well as heterochromatin have been implicated if not thoroughly studied
(Schultz, 1950). Some have effects restricted to the variegated expression
of particular loci, others to the extent of inactivation for some or many
rearrangements. Single variegation-modifying loci have usually been
localized only to chromosome, due to the labor of identifying recombinant
genotypes that are only revealed in particular variegation assay systems.
For example, Hinton (1949) found that the third chromosome from an
Oregon-R stock markedly enhanced the eye phenotype associated with
In(2LR)40d. The homozygously lethal E(var)7 is in 2L (Schultz, cited in
Gsell, 1971) although its location is uncertain and in fact it may not even
be a single locus. It has a stronger enhancing effect than is associated with
most second chromosomes for mottling of w and rst (Schultz, cited in
Lindsley and Grell, 1968), B in various BYY derivatives (Brosseau, 1960)
and y inthe sc% Y (Gsell, 1971). E(var)7 enhanced 12 of the 23 Y-suppressed
lethals tested by Lindsley et al. (1960). Of these, 11 were also enhanced
by Df(2R)M-S2%, which also enhanced 7 of the lethals unaffected by
E(var)7.

Certain completely euchromatic rearrangements, In(2LR)Cy and
In(3LR)Ubx*%, are broad-spectrum variegation enhancers (Schultz, 1950,
and personal communication; Suzuki, 1965; Spofford, unpublished
observations). The particular C(/)RM and C(/)RA chromosomes tested
by Suzuki (1965) differed systematically in their effects on the amount of
eye pigment developed with Dp(1;3)N?64-58 C(I)RM associated with the
more pigment. It is difficult to assign causes for the effects of these re-
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arranged chromosomes; they may have differed in their specific genetic
contents as well as in their linear sequences.

One modifying locus that has been given relatively thorough study is
Su(var), mapped at 414, in 3L (Spofford, 1967). Although it is in the
proximal region characterized by low recombination per band, it lies in
typical euchromatin to the left of ¢h, which has been localized to 72A-B1
(Ward and Alexander, 1957). Most stocks appear to be polymorphic for
alleles of Su(var). The studies have been conducted on two extreme alleles,
christened Su(var) and Su(var)*, which can be maintained in homozygous
stocks, although the fertility of Su(var)/Su(var) females is low when they
are C(I)RM|Y.

The spectrum of variegation systems on which the Su(var) locus acts,
and the roles of the two alleles in these cases, have not been as extensively
surveyed as for E(var)7. When assayed on the variegated w, rst or dm -
phenotypes associated with Dp(1; 3)N2¢4-58 (Cohen, 1962; Spofford, 1967,
1973), or w in In(I)w™¢ or rst in In(I)rst® (Spofford, 1969), the two alleles
acted without dominance and with a maternal effect as great as the direct
effect on phenotype. Su(var) suppressed and ““Su(var)*” enhanced. The
effects were the most striking with the w mottling of Dp(/;3)N284-58, A
complete range of eye pigment levels could be obtained in y w/Y; -/Dp
males with paternally derived Dp, by manipulating the Su(var) genotype,
from rare traces of pigment in fewer than one in 500 males when both
mother and son were Su(var)* [Su(var)* to full pigmentation in both eyes
of most flies when both mother and son were Su(var)/Su(var).

The temperature sensitivities of Dp(/; 3)N264-58 stocks homozygous for
these two alleles have already been described (Section IV, A.2). It is
possible that the Su(var) locus is responsible for the elaboration of a
diffusible substance. Gearhart and MacIntyre (1971) mentioned that when
Dp(1;3)N284-58 eye disks were transplanted, the Su(var) genotype of the
host larva influenced the amount of pigment developed in the disk. Janning
(1971) found that the general variegation pattern was intrinsic to the disk
insuch implants (Section I11, F). However, the transplanted disks developed
less pigment altogether than appeared in the eyes of normally developing
sibs of the donors. Since the host and donor were unrelated, they may have
differed in Su(var) locus genotype, with consequences mediated by diffusion.

When the two alleles were assayed on y variegation in In(/)y*" or sc in
In(I)sc*, their roles were reversed and the quantitative difference between
genotypes lessened (Spofford, unpublished observations). The maternal
effect was so slight as to be statistically insignificant. For y3”, Su(var)
became a recessive enhancer of mutant expression in the post-scutellar
bristles. The cores of individual bristles frequently contained intermediate
amounts of pigment. They were graded on a scale from 0, for pigmentless,




996 JANICE B. SPOFFORD

through 4, for full pigment. The average score for Su(var)/Su(var) was
1-4 compared to 2-1 for other genotypes. The average values for backcrosses
(1-7) and F, (1-9) were close to Mendelian expectations for these segregating
sibships. The Su(var) locus was found to have a non-dominant direct
effect on a point mutant at the sc locus, sc?. Each substitution of a Su(var)*
for a Su(var) gene in the genotype repeatably added an average of 0-5
bristles to the scutellum. The direct effect on the point mutant makes any
assessment of the role of Su(var) in sc variegation extremely difficult.
Indeed, I have not found it possible to demonstrate any consistent effect
of the two alleles at this locus on scutellar bristle number in In(D)sc®]Y
sons of C(/)RM|Y mothers. They did have consistent effects on In(1)sct|Y
sons of C(/)RM|Y mothers. Such sons had bare scutellums, but each
substitution of a Su(var)* for a Su(var) gene in the mother’s genotype
added an average of 0-06 notopleural bristles to the two sides, and the
same substitution in the fly’s own genotype added an average of 0-21
notopleural bristles.

Each of the genetic components that has been shown to suppress or
enhance variegation in some systems—the Y, the parental source of the
rearrangement, Df(2R)M-S", E(var)7, Su(var)—either changes the sign
of its effect in some others or is ineffective. If any rules govern the type of
response a particular variegation system will display to each of these
factors, they have yet to be discovered.

A converse question can be asked. Does suppression by extra Y’s
(especially the part proximal to the KS factors or within the KL factors)
and by deleted X’s retaining much of their heterochromatin, and enhance-
ment by heterochromatin deficiencies either to the left or right of bb in the
X, by Df(2R)M-S%, and by haplosomy for the fourth chromosome,
guarantee that a particular phenotype is due to a position-effect variegation?
The answer most probably is no. All these, and a stronger mutant expression
at lower temperatures than at higher, have been found for spa (Morgan,
1947), a probable point mutant located distally on the fourth chromosome
(Hochman, 1971). I have also already mentioned that two mutants that
act recessively in females to distort the sex-ratio in their progeny—abo
and da—are less strongly expressed when a Y chromosome is added to
the maternal or offspring genotype (Sandler, 1970, 1972). These loci
may prove to play a role in the same developmental system that is dis-
arranged in position-effect variegation.

H. INHIBITORS OF DNA REPLICATION, TRANSCRIPTION,
OR TRANSLATION

Few of the attempts to modify variegation through treatment or feeding of
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larvae with substances expected to interfere with mitosis, purine or
pyrimidine biosynthesis, faithful DNA replication, mRNA transcription
or the translation process have led to interpretable results.

Colchicine suppressed variegation in 7/(/,; 4)w™258-21 ferales. This may
involve simple disturbance of cytokinesis from dissociation of spindle
fibres into their component subunits. However, it would be wise to
conclude merely that variegation involves at some point a self-assembly
process, since colchicine is known to disrupt the self-assembly of other
macromolecular systems.

The phenotype of T(1;4)wm258-21/gp females was insensitive to a variety
of pyrimidine analogues and several purine analogues, but was less mutant
with 2,6-diaminopurine or benzimidazole (Schultz, 1956). Azaserine, an
inhibitor of purine biosynthesis, and deoxypyridoxidine, among other
things an antagonist in serine-biosynthesis, also suppressed variegation.
Schultz mentioned that the strongest modifier of w variegation was
amethopterin, blocking the methylation of deoxyuridine in the synthesis
of deoxythymidine (dT). Even wild-type flies showed several anomalies
after developing in amethopterin-containing medium. Bristle shape,
however, was normal. Hence, the data Schultz presented concerned
variegation of the dominant S5 allele contained in an insertion of 89B-93D7
into the base of 41A. The percentage of Sb bristles decreased nearly linearly
with increasing dose of amethopterin. Added dT removed the response to
amethopterin while added deoxyadenosine exaggerated it. In interpreting
what is possibly a consequence of the inhibition of DNA replication,
especially of a region for which thymidine is the limiting factor, it might
be well to note that polytenization of the bristle-forming cells occurs early
in pupal development and that failure of the Sh locus to replicate while
adjacent to non-replicating heterochromatin may well be the mechanism

of inactivation for this particular phenotype without providing us with
much insight into the general process of variegation.

A remarkable insensitivity has been displayed to inhibitors of transcrip-
tion and translation. Baker ( 1967) administered actinomycin-D, puromycin,
cycloheximide and 5-methyl tryptophan separately in the food to first
instar Dp(1; 3)N2%4-58 larvae without effect on the eye pigment level in the
resultant adults, except for a slight increase in drosopterin with the last
agent, perhaps through a direct effect on the pteridine pathways. For some
of these inhibitors, the insensitivity may result from impermeability of the
eye disk to them. Kuroda (1970) noted that explanted eye disks differentiate
ommatidia when provided with appropriate hormones in vitro, whether or
not bromodeoxyuridine, actinomycin-D or puromycin are present. Either
the appropriate macromolecules had already been synthesized by late third
instar, or the inhibitors had not reached their target sites in the cells.
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However, in the case of actinom
the end of the first instar and the number

later induction of somatic crossing over,
and their number increased at the same

(Perez-Davila and Baker, 1967). Measurement of the DNA content of the
eye disks after growth had been arrested for a day indicated the possibility
that some DNA replication had continued (Baker, 1968). In that event,
when growth resumed following removal of inhibitor, the r

the size of twin spots decreased
rate as in the untreated controls

ined earlier (Section I1, F) did not
y second instar, or if it did, trans-
8 sensitive to inhibition than is the

require mRNA synthesis during earl
cription of the relevant loci was les
case for most loci.

V. Heterochromatin and Chromosome Organization
The subject of heterochro

A. THE TIME oF ”HETEROCHROMATIZATION”

It is well to recall that a segment of a chromosome may be heterochromatic

ot in another. In fact, during cleavage, no part of

distinguished. The absence of chromocenters in cleavage nuclei was first
noted by Huettner (1933). Heteropycnotic regions begin to appear during
the prophases of the second hour after egglaying. Typical chr.

long postponed cytokinesis at last forms the blastoderm (Rabinowitz, 1949
Mahowald, 1968). At this time, not only do larger extents of the chromo-
some fiber condense into a tangled and apparently disorganized mass in
the heterochromatic regions, but short extents, of moderately varying
length at relatively uniform intervals from each other condense into what
may be chromomeres (Ashton and Schultz, 1971 and personal communica-
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tion). Subsequent mitoses have both a longer interphase and a longer
prophase than the syncytial cleavage mitoses.

When a 160-minute lateral blastoderm nucleus, with well-developed
nucleolus and heteropycnotic clumps, is injected into an unfertilized egg,
the first 10 minutes are occupied with enlargement and rounding out of
the injected nucleus, loss of heteropycnosis, and recovery of the homo-
geneously diffuse appearance typical of an interphase cleavage nucleus.
In 5 more minutes the nucleolus disappears and, 20 minutes after injection,
the nucleus divides (Illmensee, 1972).

Thus, whether a given chromosome region is to be heterochromatic or
euchromatic at a particular time in a particualr cell must be determined by
factors some of which are extrinsic, some intrinsic to the coded base
sequence in the DNA of the chromosome itself. In dividing cells, the
condition of heterochromaticity is not irreversible for a given chromosome
region although it appears to be inherited mitotically with considerable
faithfulness. Whether precisely the same segments of chromosome are
included in heterochromatin in most tissues is not known.

In the neuroblast and germ-line cells of most Drosophila specics,
heterochromatin is localized at the centromeric end of the chromosome arms,
as it is in many eukaryotes. Although rearrangements can and do move
large blocks of heterochromatin distally between stretches of euchromatin,
this condition does not seem to be evolutionarily stable. The hetero-
chromatizable portion is larger for the sex chromosomes than for the
autosomes, with the exception of the “dot” chromosomes in some species.
The Y chromosome is completely heterochromatic, except for the nucleolus
organizer and, occasionally, the regions seen as *‘constrictions”, in most
cells. Yet it becomes diffuse and is transcribed during prophase in the
primary spermatocyte and is probably diffuse in the nurse cells of the ovarian
follicle of XXY females (Schultz, 1956). About one-third of the X
chromosome is heterochromatic in most cells, but the whole chromosome
condenses earlier than the others while the Y is active during spermato-
genesis. Lifschytz and Lindsley (1972) propose that the condensation is
initiated in a heterochromatic region between su(f) and the nucleolus
organizer, for which many deficiencies and translocations to autosomal
euchromatin are male sterile.

The above information has pertinence as to whether we should expect a
given rearrangement, involving a heterochromatic breakpoint, to induce
variegation of a given locus. If the locus were to act, once and for all,
during the cleavage stages, it should be incapable of position-effect
variegation, If it acts in a cell-lineage at a time at which the ‘‘hetero-
chromatic” region to which it is coupled is also active, there should be no
variegation for that locus in that cell lineage regardless of its variegation in
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females pooled. The amount varied approximately linearly with the amount
of Y chromosomal material in the pooled genotypes of the two sexes in
stocks differing in the number of extra arms of the Y carried in one or
both sexes. From the increment in 9%, dAT per whole additional Y, it
was possible to infer that roughly half of the dAT in a normal chromosome
set is on the Y, distributed on both arms, the remaining half somehow
apportioned to the X and autosomes. The proportion of dAT in pupae
and adults is half its value in embryos (Blumenfeld and Forrest, 1972),
indicating underreplication. Ellison and Barr (1971a, b, 1972) have strong
presumptive evidence that regions of nearly pure dAT show an extra-
ordinarily brilliant fluorescence after quinacrine staining. The metaphase
chromosome pattern of intense fluorescent spots differs between species.
In D. melanogaster, the entire Y, the basal third only of the X hetero-
chromatin, most of the fourth chromosome, and a very small part of the
metacentric autosomal heterochromatin, not immediately next the centro-
mere, fluoresced intensely. Most was not replicated during polytenization
in the salivary gland. In salivary gland chromosomes, bright flecks could
be seen in the chromocenter, and bright bands in 81F, at the base of 101,
and in 102D1-2. Polymorphism exists for brightness at 83DE, a “weak
spot”. Ectopic pairing was common between 81F and the slightly more
DNA-rich 83DE region when the latter was bright but very rare when
the latter, less DNA-rich, was not bright (Ellison and Barr, 1972). The
polymorphism may be for the dAT material itself in 83DE but is more
likely for the capacity of some dAT material at that site to replicate as the
chromosome polytenizes. The fact that 83DE is a constriction easily broken
as the chromosome is stretched suggests the normal presence there of
non-replicated chromatin. The dosage of some component in this region
is extraordinarily important. This region was not only one of the few
haplo-lethal regions discovered by Lindsley et al. (1972) in their survey
of D. melanogaster autosomes, but it was the only triplo-lethal region.
Another low-density satellite with about 709, AT constitutes nearly 8%,
of the DNA of larval brain and imaginal disk tissue in both D. melanogaster
and D. virilis but is virtually absent in salivary gland chromosomes (Gall
et al., 1971). This satellite is not homogeneous in base sequence in D.
melanogaster since when it was dissociated into single strands, at least
two sets of complementary light and heavy strands could be separated by
their densities. However, radioactive RNA transcribed in vitro from this
satellite annealed only to the chromocenter of salivary gland chromosomes
(Rae, 1970). There was a similar localization of the repeated sequences of a
slightly heavier, but still AT-rich, satellite of D. virilis (Gall et al., 1971).
The amount bound in the chromocenter of the polytene nuclei was the
same as for a diploid nucleus under conditions in which only repeated
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length, Kram et al. argued persuasively that unique sequence segments of
3000 to 6000 base pairs separate 2500 to 10,000 nucleotide-long regions
of highly repeated sequences so that the larger segments recovered usually
contained both reannealed and single stranded parts.

2. Histones

Oliver and Chalkley (1972) have resolved 10 histone fractions in adult
D. melanogaster chromatin. No qualitative differences in the histones have
been found between non-polytenizable heterochromatin and the remainder
of the chromosome complement of D. melanogaster—the positions of the
bands in acrylamide gels after electrophoresis of histones from salivary
glands and from imaginal disks were the same (Cohen and Gotchel, 1971).
There may yet prove to be differences in total amount or relative propor-
tions of the individual histone fractions between heteropycnotic and
diffuse chromatin. Berlowitz (1965) found 2-6 times as much histone per
DNA in the heterochromatized paternal set as in the euchromatic maternal
set of chromosomes in the mealy bug. Polylysine and lysinie-rich (F,)
histone have a particularly high affinity for AT-rich DNA (Georgiev,
1969). There may also prove to be differences in the extent of acetylation,
phosphorylation, and S-S crosslinking of various histones in the two kinds
of chromatin, acetylation, phosphorylation, and reduction of S-S bonds
having been related in other organisms to preparation for transcription or
replication (reviewed in Wilhelm ef al., 1971)

3. Non-Histone Chromatin Proteins (“ NHP”)

These usually constitute a somewhat smaller portion of the proteins in
chromatin than do the histones. They are a very diverse assemblage of
proteins, sharing the property of binding closely to DNA. Since they
contain more acid than basic residues, they have greater selectivity for the
base sequences with which they will bind than do the histones, which are
presumed to form salt linkages with the phosphates in the DNA backbone.
The histones can be viewed as a set of general-purpose “clamps” for
retaining a particular tertiary configuration of the DNA double helix. The
NHP’s by their binding determine the specific configuration. Both NHP’s
and histones form a sort of self-assembly system when combined with
DNA. This was elegantly demonstrated in work in other organisms
reviewed by Paul (1970). The tissue-specificity of RNA transcription and
also a normal chromatin appearance in electron micrographs was restored
to DNA to which the NHP and histone, previously removed, were added
back, in that order, i vitro.
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chromatin have been reported.
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brief interphase, at a pace that can be accomplished only if the individual
replicons are much smaller and correspondingly more numerous than
later in development (Rudkin, 1972 and Blumenthal et al., 1974). With
the extended interphase accompanying blastoderm formation, not only do
heteropycnotic regions appear in the chromosomes, but the S-phase is
greatly extended, replication of the heteropycnotic regions being deferred
till near its end. Breviry of the cleavage synthesis phase and its extension
with late replication of heterochromatic regions is common to many animal
zygotes (Brown and Dawid, 1969), exceptions to the rule that centromeric
heterochromatin is late-labeling being uncommon (Comings, 1972). Whole
chromosomes that become facultatively heterochromatic—the second X in
mammals of the paternal set in mealy bugs—become late-replicating at
the same time (Brown, 1969). Late replication has thus come to be
considered a hallmark of heterochromatin.

The replication pattern has been studied in larval neuroblast cells in
the large-chromosome species Samoaia leonensts, a close relative of the
genus Drosophila. Following the termination of all tritiated deoxythymidine
(*HdT) incorporation in euchromatin, labeling continued in the regions
intensely fluorescing with quinacrine stain: the dot chromosome, the
autosomal arm bases, the short heterochromatic base of XL, and the
whole of XR (long as in D. hydei) and the Y (Ellison and Barr, 1972).
The dot chromosome heterochromatin completed replication first. The
long autosomes and XL finished next, XR and the Y last. It may be noted
here that while S. leonensis heterochromatin is rich in poly-dAT, it
incorporated virtually no tritiated uridine (3HU) in Malpighian tubes
(Kessler et al., 1973), confirming the transcriptional inactivity of at least
one component of heterochromatin DNA in one drosophilid species.

Even in neuroblasts in D. hydei, Berendes and Keyl (1967) showed that
the chromocentral regions were not merely replicated later, but were
underreplicated.

With the greater detail accessible to study in the salivary gland chromo-
somes, some individual bands have been found to require nearly as long
to replicate as the quasi-heterochromatic arm bases. These all contain one
or more large bands, such as are in 584, 59D, 11A, 12DE, 3C, or 1A in
D. melanogaster (Plaut, 1969 ; Rudkin, 1972) or 16D in D. hydet (Berendes,
1966). Some of these long-, and thus late-, replicating bands are in
constricted regions where the chromosome breaks easily upon squashing,
as in 16D of the D. hydei X, just proximal to the white-Notch region.
Rudkin has concluded that these long-replicating bands contain unusually
long replicons. A long replication period should not by itself be considered
sufficient evidence for the quasi-heterochromatic nature of these bands,
but should be duly considered in assessing the possible linear heterogeneity
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applied. Regions identified as heterochromatic because X-rays induce in
them a high number of breaks per band (Kaufmann, 1946) are usually
regions with dense bands. The breakage frequency correlates remarkably
well with the amount of DNA in the region (Lefevre, 1969). Yet some of
the dense-banded regions highly breakable by X-rays, e.g. 3C, 11A, 12DE
and 19E, have deep constrictions such as would result from a lesser or
non-replication of an interval in the chromonemal continuum adjacent
to these intervals of prolonged replication and great compaction into dense
bands.

Ectopic pairing has been used as a clue to the heterochromaticity of
regions, whether centromeric or intercalary. The ectopic pairing between
the quinacrine-bright spots in 83DE and 81F must signify strong similarity
and probably homology of DNA sequence, since the brightness is associated
with the presence of poly dAT (Barr and Ellison, 1972). Kaufmann and
Iddles (1965) have published a detailed map recording all the ectopic
associations of bands in 400 cells. Dense bands were responsible for most
of the ectopic pairings. For example, region 3C1-3 was recorded as pairing
at least once each with 3C5-7, 4D1-2, 10B1-2, 114, 56AB, 96A and 98C.
Pairing with the zeste band 3A3 was not noted, nor was the 81F-83DE
association. However, included among the regions most often paired
ectopically are the ““discontinuities” or offset constrictions in 11A, 12DE,
19E, 33A, 35E, 36DE, 42B, 64C, 70BC, 75C and 89E.

Another criterion for intercalary heterochromatin could be its induction
of position-effect variegation in a locus whose expression can be unambigu-
ously mosaic, such as white. By this criterion, the 58 RNA locus in 56EF
might be in or near intercalary heterochromatin. One of the few puzzling
instances of white variegation is provided by T'(I;2)w!392, placing the
locus in 56F.

The value of these various clues could be checked against the properties
of sections of centromeric heterochromatin that have been known to be
inserted into euchromatin through rearrangements such as In(1)sc®, or the
partial reversions of T'(I;4)w™!, or In(I)lz° . They retain their refractori-
ness to crossing over (Baker, 1958) and often evoke or continue to evoke
variegation (Panshin, 1938; Hannah-Alava, 1971; Baker, 1971; Breugel,
1970). They tend to pair ectopically with the chromocenter (Prokofyeva-
Belgovskaya, 1947 ; Hannah-Alava, 1971; Breugel, 1972). In salivary gland
chromosomes the inserted heterochromatin is itself not visible. Sometimes
its position is occupied by a normal-appearing interband, sometimes by a
constriction or an abrupt change in chromosome diameter. When the distal
heterochromatin includes the nucleolus organizer, this is sometimes said
to be represented as a puff rather than a fully devleoped nucleolus (Hannah-
Alava, 1971 ; Breugel, 1972). The banding in adjacent euchromatin becomes
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variable in appearance, interbands occasionally missing, with perhaps
even some underreplication of euchromatic DNA. In(1)sc8, in which most
of the centromeric heterochromatin of the X, including the nucleolus
organizer, is brought nexc 1o 1B2, is characterized by extreme variability
in the distinctness of banding not only of 1AB but also of section 20, where
Prokofyeva-Belgovskaya ( 1947) could never distinguish more than sub-
sections ABC. In the shorter inversion In(I)w™¢ not including the nucleolus
organizer, the whole of 20A-F can be seen inverted (Prokofyeva-
Belgovskaya, 1947; Schalet and Lefevre, 1973). An insertion of polyteniz-
able but variably banded 41B-F between 3C5 and 4C4 on the X led to
more frequent clear banding of part of the inserted material (T(1; 2)ywm258-38,
Sutton, 1940), as well as variegation of w and rs¢ distal to the insertion.

It must be mentioned here also that suppression of gene activity has
several times been attributed to adjacent insertions of material behaving
like variably polytenizable heterochromatin of uncertain origin. Both bw?
(Hinton and Goodsmith, 1950; Slatis, 1955b) and ey” (Hochman, personal
communication) have been so explained. Slatis found the element in
question to be invisible in some cells but to vary in distinctness in others.
At most he could distinguish three thick and one thin band, suggesting
that the source of the insertion included the occasionally banded region
bordering the salivary gland chromosome euchromatin. Thirty per cent
of the cells showed a distortion or break between this element and 59E1-2
as if the insertion was considerably underreplicated.

As must be apparent in the foregoing presentation, I consider evidence
of non-replication the best guide to the existence of heterochromatization
of a section of the chromosome fiber in the midst of euchromatin in the
salivary glands. Underreplication or erratic band formation, comparable
to that normally seen at the bases of chromosome arms, can perhaps indicate
proximity to a truly heterochromatic, hence non-polytenized, section.
The other criteria, although applicable to material adjacent to hetero-
chromatin, do not differentiate the smaller chromosome fiber knot that is
called a large chromomere from its very much more massive entanglement

in the heterochromatin of a diploid nucleus, or in the virtually unreplicated
material in the chromocenter of a polytene cell. By the more stringent
criteria, there remain several regions in the normal chromosome that may
contain intercalary heterochromatin. I am not aware that any of these,
except possibly 56EF, have been implicated as variegation inducers.

VI. Summary and Conclusions

Heterochromatin is chromosomal material that is condensed throughout
most of the cell cycle and that is transcriptionally inactive. Certain
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chromosome regions are heterochromatic in nearly all cells throughout
most of their development. There is no present reason to suppose that the
common behavior of these regions reflects an identity in their molecular
composition—indirect evidence indicates at least a certain degree of linear
differentiation within heterochromatin.

From the spread of heterochromatic properties to normally euchromatic
chromosome regions in euchromatin-heterochromatin rearrangements, it
must be concluded that the normal boundary zones between euchromatin
and heterochromatin have special properties in limiting the extent of the
chromonemal thread that is condensed and transcriptionally inactive,
Some of the genes in these boundary zones must be presumed to require
these special circumstances for function, since they become inactive when
moved into more distal euchromatin, and sometimes also when moved to
certain different associations with centromeric heterochromatin. From a
detailed study of the relation between the various chromosome components
and factors that influence the extent and frequency of inactivation of
euchromatic regions juxtaposed to particular sections of heterochromatin,
it may be hoped that a molecular explanation of the normal hetero-
chromatization as well as the variegation process will emerge.
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Notes added in proof

Chapter 24 Position-effect Variegation in Drosophila
Fanice B. Spofford

(1) Since my chapter was written the important work of Peacock et al.
(1974) has been published, describing the isolation and characterization of
five DNA satellites accounting for much of the non-polytenized hetero-
chromatin DNA. Most of these satellites form extremely long tracts. Four
are also located in 21CD of 2L. Sederoff et al. (1975) find tracts containing
roughly 750 repeats of a five base-pair sequence in which one strand contains
only pyrimidines and its partner only purines. These tracts are scattered
in the heterochromatin of the Y and second chromosomes.

(2) Hoechst 33258 stain produces a still more brilliant and differentiated
fluorescence pattern in prometaphase chromosomes (Holmquist, 1975).
The heterochromatic bases of all four long autosome arms are clearly
distinguished. At least eleven regions can be discerned in the Y chromo-
some. The intensity of Y chromosome fluorescence permits its identification
in polytene nuclei, usually adjacent to the base of 2R.
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